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1. INTRODUCTION

As the United States of America ventures into a new era of Space Exploration with the

return to the Moon and then on to Mars and beyond with both manned and unmanned

spacecraft, more effective approaches to developing these new spacecraft must be found.

These approaches must address cost, schedule and technical performance.

Previous space programs have usually relied upon one major space vehicle being in

development or flight at a time. In the future, multiple vehicles such as the Artemis

Common Lunar Lander, Manned Lunar Lander, National AeroSpace Plane, Unmanned

Mars Lander and even a manned Mars Lander will be in various stages of the development

life cycle simultaneously. In order to be able to afford the development of these vehicles,

new and evolutionary approaches to the design of these vehicles must be developed.

Avionics systems are a prime candidate for the development of evolutionary approaches as

there is much commonality between the functions that must be provided for all space

vehicles.

This report presents a full description of the Space Generic Open Avionics Architecture

(SGOAA) established in [WRA93]. The SGOAA consists of a generic system architecture for

the entities in spacecraft avionics, a generic processing architecture and a six class model of

interfaces in a hardware/software system. The purpose of the SCA)AA is to provide an

umbrella set of requirements for applying the generic architecture interface model to the

design of specific avionics hardware/software systems. The SGOAA defines a generic set of

system interface points to facilitate identification of critical interfaces and establishes the

requirements for applying appropriate low level detailed implementation standards to

those interfaces points. The genetic core avionics system and processing architecture

models provided herein are robustly tailorable to specific system applications and provide a

platform upon which the interface model is to be applied.

The SGOAA is intended to be used by both avionics system designers and avionics system

implementors in the development of open systems architectures for avionics. The system

under design shall be expressed in the context of the System Architecture and Generic

Processing Architecture as described in Sections 2.3.1 and 2.3.2 respectively. The

Architecture Interface Model shall be directly applied to identify the specific interfaces

requiring application of lower level standards. The selection of specific lower level
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standards is dependentupon unique systemrequirements,but shall be conductedin

accordancewith the guidelines described in Section 2.2.1.2.

An open systems architecture can provide the following benefits to future space programs:

Provide the basis for establishing a set of specifications, standards and procedures

that will become common to all systems used in simultaneously operational

missions, e.g., to simplify interfaces between multiple vehicles (such as the

shuttle and station) when performing a joint mission such as docking.

Ensure that future avionics systems can be upgraded and maintained with

minimal redesign impact to the existing avionics system by establishing the

interfaces required to enable modular replacement of hardware and software.

• Promote availability of multiple sources of needed avionics software and

hardware by defining standard interfaces.

Provide a pool of hardware and software modules for multiple program re-use by

defining standard interfaces and promoting hardware and software reuse and

commonality.

Insure access to the architecture and its design documentation for any vendor or

agency desiring to propose new uses and applications, and to facilitate

competition to contain cost growth.

An Advanced Architecture Analysis was conducted by Lockheed Engineering & Sciences

Company (LESC) for the National Aeronautics and Space Administration (NASA) Johnson

Space Center (JSC) to develop a generic methodology for defining avionics architecture that

can be tailored to match the varying requirements of all space vehicles without requiring

the system engineering team for each new vehicle to reinvent the requirements analysis

and design process. The methodology is presented in reference [WRA91].

An Architecture Requirements Study was conducted for JSC by Boeing Defense and Space

Group [BOE91] to develop the requirements for generic software and hardware architecture

for space missions. The requirements developed drive the architecture and are

incorporated in this document. [BOE91] also presented specific performance parameters for

many of these requirements. The performance parameters are considered design
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requirements and as such are outside the scope of the SGOAA, but are summarized in

Appendix B for reference.

SATWG system design goals and objectives were considered in establishing the following

SGOAA design goals:

(1) Minimize life-cycle costs

(2) Provide a robust design

(3) Provide technology transparency

The SGOAA presented in this document is a product of the ongoing Advanced Architecture

Analysis task for JSC. The SGOAA consists to date of the following models:

• A Generic System Architecture Model

• A Six Class Architecture Interface Model

• A Generic Processing External Hardware Architecture Model

• A Generic Processing Internal Hardware Architecture Model

The SGOAA was developed by first designing the following two functional avionics

architectures as described in Section 2.1:

• Space Data System Services (SDSS) Subsystem Architecture

• Space Operations Control Subsystem (SOCS) Architecture

These are the two key integrating subsystems of the generic system architecture. These

architecture are reuse architecture and can be tailored to match the varying requirements of

multiple space vehicles in accordance with the goal of the Strategic Avionics Technology

Working Groups (SATWG) Space Avionics Architecture Panel (SAAP) to develop families

of avionics systems suitable for multiple program use.

The SGOAA and the two functional subsystem architecture presented in this report satisfy

the Portable Operating System Interface for Computer Environments _OSIX) "Avionics

Software Open System Environment Reference Model" in reference [POSIX91] as discussed

in Section 2.1.3.1. The relationships of the SGOAA to the OSI model are discussed in

paragraph 2.1.3.2.
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1.1

A standard or set of standards is needed for advanced architectures in future space

programs. The LESC Advanced Architecture Analysis is being performed under the

auspices of D. Pruett, Manager for Advanced Programs for the NASA JSC, Flight Data

Systems Division (FDSD). Its objective is to develop a family of architectures for space

avionics systems that can be used in any future space vehicle or facility. The information in

this document is intended to support the SAAP goal of minimizing life cycle costs,

including sustaining engineering costs, of space avionics hardware and software.

1.2 PURPOSE

This document is a technical guide to the proposed SGOAA Standard, and has been

produced by LESC. The proposed SGOAA Standard is contained in a separate document

[WRA93]. This technical guide presents the results to date of the Advanced Architecture

Analysis task to assist the SATWG and SAAP with strategic planning for avionics

development in future space programs. All of the work presented has been done at JSC. It

is hoped that this report will stimulate participation and contributions from the other

NASA centers or SATWG members. Feedback and response from the readers are solicited

and should be directed to D. Pruett, NASA Johnson Space Center, EK11, Houston, TX 77058;

NASAMAIL: dpruett; INTERNET: dpmett@asdl.jsc.nasa.gOv; or to R. Wray or J. Stovall,

LESC, 2400 NASA Road 1, Mail Code C18, Houston, "IX 77058. Future revisions of this

document will be published as the study task progresses.

1.3 SCOPE

The results presented here are the third release of the results of a continuing effort by JSC

and LESC to develop an overall generic architecture for avionics, which can be applied to

the development of all future space mission avionics systems.

1.4 APPROACH

The approach taken by this study team was to gather data on existing space programs (Space

Shuttle and Space Station) in order to develop a comprehensive understanding of the

functions and services that space avionics systems must provide in order to develop an

architecture that would not be a "blue sky" approach, but would be based on reality.
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Thearchitecturedevelopment effort alsomonitored efforts by the SATWG and its

contractors to build generic, standard or open architecture. Of special note was the

incorporation of the avionics software Open System Environment Reference Model, as

presented in reference [POSIX91], into this architecture.

The main source of the underlying requirements for the SGOAA (outside of shuttle and

station documentation) were References [GD90A] and [BOE91] from the SATWG. In

particular, the driving requirement was for an open architecture allowing multi-vendor

sources for components, interchangeable and interoperable elements with reduced

complexity and cost and common elements. This led to the approach of using common

space applications software relying on common data system services. The requirement for a

robust modular system led to the need to avoid preconceptions on partitioning functions

between subsystems, in order to create a modular structure which facilitates hardware and

software reuse on multiple programs/missions and modular upgrades. Upgrades may

occur due to technology insertion, maintenance actions or changing mission requirements.

The requirement to support technology upgrades led to a structure which isolated specific

technologies from requirements implementation to the extent possible.

As shown in Figure 1-1, a starting requirement for the architecture development was that it

should be adaptable to all future space missions including:

• Surface-to-orbit missions to reach low Earth orbit, Lunar orbit or Mars orbit from the

local planetary surface.

• Docking and berthing operations between adjacent space platforms such as shuttles

arriving at the space station, heavy lift vehicles linking with orbiting vehicles, Lunar

ascent vehicles mating with their orbiting transfer vehicles, etc.

• Orbit station keeping operations by orbiting platforms maintaining stable orbits

around a planetary body, such as the space station in Earth orbit, the Lunar transfer

vehicle on Moon orbit, or the Mars space station in Mars orbit.

• Orbit-to-orbit transfers, which may be from low to high Earth orbit, from Earth to the

Moon, or from Earth (or another planet) into deep space.

• orbit-to-surface missions to land on the Earth, Moon or Mars from an orbiting or

arriving space vehicle.
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• Fixed surface operations in a fixed base such as on the Moon base or Mars base,

where such a base may be performing permanently manned complex operations or

just temporarily manned exploration operations.

• Mobile surface operations in rover or similar vehicles moving on the planet surface.

The SGOAA incorporates both hardware and software into one architecture. Since all space

flight data systems are heavily dependent upon software, this was a primary consideration

in ensuring effective software requirements and effective software-to-software and

software-to-hardware interface definition.

1.5 ORGANIZATION OF

Section 2 describes the SGOAA background requirements (based on work by Boeing in

reference [BOE91]), and the SGOAA itself, including the Generic System Architecture Model

in paragraph 2.3.1, the Architecture Interface Model in paragraph 2.3.2 and the Generic

Processing Hardware Architecture Model in paragraphs 2.3.2.1.1, 2.3.2.1.2 and 2.3.2.1.3..

Section 3 discusses development of the detailed Space Generic Avionics functional

architectures (SDSS and SOCS). It also describes the results in applying the generic models

to two space programs: the Space Station and the Common Lunar Lander. Section 4

discusses the conclusions reached to the present and the recommendations for continuing

development.
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m SPACE GENERIC OPEN AVIONICS ARCHITECTURE REFERENCE

REQUIREMENTS AND MODELS

Standards are needed in the development of generic open avionics architecture, as

previously noted. But standards without a reference model are very difficult to apply, and

hence of limited utility. A reference model is needed to show how to apply the standards,

to check if the application is complete and consistent, and to identify the effort remaining

for completion of an application. The reference model provides the structure on which the

standard is built, and from which applications using the structure can be developed. Section

2.1 provides the background, processes used and ground rules for developing the model.

Section 2.2 defines the architecture requirements. The reference models are described in

Section 2.3: The SGOAA Generic System Architecture Model in Section 2.3.1, the

Architecture Interface Model (AIM) in Section 2.3.2, the Hardware Interface Architecture

Model in Section 2.3.2.1.1, the Generic Processing External Hardware Architecture Model in

Section 2.3.2.1.2, and the Generic Processing Internal Hardware Architecture Model in

Section 2.3.2.1.3. Detailed relationships between the POSIX and SGOAA models are

described in Section 2.4. Architecture applications of the reference model are described in

Section 3.

The POSIX Open System Environment (OSE) Reference Model is the basis for incorporating

application software portability and interoperability into the five models that comprise the

SGOAA. The IK)SIX Model can be related to the OSI Model and the SGOAA Interface

Model as shown in Figure 2-1. The OSE Model communications links are defined in detail

by the Open System Interconnect (OSD Model for peer-to-peer communications. The OSE

Model interface classes are defined in detail by the proposed SGOAA Interface Model. Model

relationships are discussed in more detail in Section 2.1.3.

The application of the SGOAA classes to the POSIX OSE model entities and interfaces is

shown in Figure 2-2.

The reference model must show how independence is achieved between interface classes in

order to treat software in each interface class as a black box with standardized interface

specifications. Six interface classes have been developed to achieve independence between

each class, to distinguish between logical and physical implementation issues and to

separate hardware and software issues. These classes also facilitate the partitioning of

software applications which serve to satisfy user requirements and software services which

serve to satisfy implementation design requirements.
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2.1 _;PACE _;ENERIC OPEN AVIONICS ARCHITECTURE BACKGROUND

A Space Generic Avionics (SGA) Core Functional Architecture was developed as the basis

for developing the SGOAA and is shown in Figure 2-3. For this development, an avionics

definition was assumed such that the control subsystems for each of the more traditional

subsystems (such as Guidance, Navigation and Control (GNC) or Communications and

Tracking (C&T)) were within the avionics boundary while the hardware sensors and

effectors were outside the avionics boundary to facilitate boundary definition with its

attendant conditions and to enable a stronger focus on architecture development.

A key study focus was to define the architecture interface requirements for the functional

services needed to enable applications subsystems to operate effectively, Le., to define the

support avionics architectural elements. These are shown by the darkened lines on the

operations control application and the data system services bubbles and interfaces in Figure

2-3. This focus provided not only an architectural target, but also some value-added

avionics functional definition for operations control and data systems services. (This

diagram is not intended to suggest that these are the only interfaces of concern in a space

avionics system, nor that the subsystems revolve around the operations control subsystem

as a central point of controL)
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Navigation
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Environ Control Subsys

& Life Spt Control SubsysHardware
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Figure 2-3. One View of the Space Generic Architecture with the assumed processing
boundary
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Development of the SGA Core functional architecture models are described in the

following paragraphs.

2.1.1 MODEL DEVELOPMENT PROCESS

The architectural model for the SGA core architecture was based on the need to provide a

reference model which incorporated both hardware and software architectural elements.

This architecture is not a completed product, rather it is a living architecture standard which can

continue to grow as more people support it and more ideas are added to its structure.

2.1.1.1 Development Backomund

The SCA core architecture is a space-function oriented architecture which stresses the

operational needs, the applications required to satisfy those needs, the applications'

requirements for services to enable them to operate, and the allocation of applications and

services to hardware and software. It treats hardware and software as secondary to the

operational and services aspect of a space avionics system.

The identification of functions in the SGA core architecture provides an appearance that the

SGA core architecture is a software architecture; however, it is intended to represent higher

level features comprising both hardware and software. Since all future space data systems

will be so heavily dependent on software, this consideration was a primary driver to insure

effective software requirements, and especially effective software-to-software and software-

to-hardware interface definition, as described later in Section 2.3.2.

2.1.1.2 Architectural Princloles Reoulred

Some of the key prindples required of an architecture to be effective in future space systems

are:

• abstraction

• information hiding
• inheritance

• modularity
• robustness

• extensibility

These principles were used in the development of the SGOAA, and their definitions are

contained in Appendix A.
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2.1.1.3 Architecture Assumptions and Ground Rules

Development of this architecture was based on use of computer aided systems engineering

tools, as described in [WRA91]. Architecture analysis needs automated tool support. The

tools need to provide basic structured analysis capabilities, centered on an integrated data

repository. A goal in picking automated tools should be the quality of their support in

enabling this methodology to be implemented. A selection factor should be the accessibility

of their data repository to other tools so that data from one tool can be extracted and passed

to another tool; preferably by using open standards for the data repository structure. No

weight should be given to a tool chiming to be capable of performing all phases of

automated development, since such a claim is far beyond the state-of-the-art in present

tools, and may not be desirable anyway. It seems likely that the tools are secondary to the

quality of the analysts in performing architecture analysis; if so, then the tools should be

selected to enhance the abilities of individual analysts.

The state-of-the-art, analytical techniques to be used require training to gain understanding

of static structured analysis, interface analysis, information modeling, object oriented

analysis, control state analysis, timeline analysis, performance analysis, dynamic system

modeling, and others used in architectural analysis.

Another key finding is that architectural definition be part of a concurrent eng_ineering

approach, requiring the integrated efforts of engineers with experience in several different

disciplines, from requirements to design, from hardware to software, and from operation to

supportability. Development of an effective architectural model for any specific application

or system needs iteration between the concerns of each specialty to insure that the resulting

model is responsive to all discipline concerns. Effective techniques to enable multiple

disciplines to efficiently interact need to be developed.

Development interface capabilities are needed. Much of the development of requirements

for complex space systems is taking place at geographically disbursed contractor sites; these

distributed requirements need to be capable of being coordinated on a continuous basis as

they are developed. A capability is needed to acquire working level requirements (in

process) from these sites, test them against each other and a larger model of the system, and

to feed back weaknesses and strengths to the developers of individual requirements sets.

This is necessary to avoid waiting too long before erroneous, deficient, weak or conflicting

requirements are uncovered; the later the correction of requirements, the greater the cost.
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This implies some data repository structure or interface standards are needed to insure that

requirements data can be exchanged. It also implies that more frequent technical

interchanges would benefit the development of subsystem requirements and architectural

elements (or sub-architecture).

An architecture developed for this standard must be adaptable to different platforms and

missions, so that architectural interfaces are guaranteed to be interoperable based on the

overall architecture from which they are derived. For example, the same architecture

should provide the elements needed for a space vehicle operations command function and

for the complementary ground processing in the ground mission control center supporting

that vehicle.

The architecture development was used as the vehicle for determining what practices

actually worked which should be included in this methodology. Assumptions about the

architecture were necessary to permit continued development of concepts and entities, and

were selected to place as little restriction on the underlying methodology as possible.

However, in case they may have constrained the methodology, they are identified below.

This section summarizes the architecture assumptions in three categories: those

assumptions related to the operation of a space platform, those related to the processing to

be performed, and those related to how the structure of the architecture was to be

assembled.

2.1.1.3.1 Operations

• Human control requirements can vary. Direct links from the human entry systems

to the sensor and effector firmware/hardware or any intermediate point on the

processing chain may be needed for emergency and manual backup purposes. The

range of control must accommodate any level of capability from manual to fully

automated (e.g., through artificial intelligence aids similar to the Lockheed Pilot's

Associate being developed for the U.S. Air Force).

• Operations control requirements must span the range from on-board controls to

mission control center to the 't_ack room" control support. The SGOAA must

explicitly define and incorporate unique elements for either specific ground support

or space vehicle architectural needs. Partitioning between these facility control

requirements should be done when applying the requirements to a specific platform
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or mission, or should be delayed until a design implementation is being prepared to

maximize developer flexibility.

2.1.1.3.2 Process

• The architecture must enable objective definition and interoperable processes for

each entity selected for inclusion in a specific instantiation of the architecture for a

specific platform.

• All entities have processes which can be applied to multiple vehicles with control

parameters used to adjust between the same type process used in different classes of

vehicles.

• Sensors and effectors are assumed to be under hardware control only or to have

firmware embedded in them for low level hardware control. Firmware processing is

treated (for requirements and design purposes) as an integral part of the hardware.

Sensors firmware processing may also enable or disable hardware, monitor power

drain, monitor for abnormal conditions, implement built-in-test (BIT) of hardware

and store results (these may alternatively be performed in the intermediate

processors as described below).

• The architecture must handle alternative forms of processing and alternative

allocations of these processes to different elements of the overall system for each

mission design. Low level vrocessing is assumed to be embedded in sensor and

effector heads; such processing may be hardware only or have embedded firmware

such that the processing will be relatively "dumb" but with sufficient capability to

gather data, format it for transmission, and route it to appropriate controllers.

Intermediate level processing includes processing such as sensor signal processing,

effector response actuator processing, post sensor processing (e.g., track processing),

multiplex data processing etc.; such processing is treated as a high level control

structures (i.e., Control Application Programs) requiring some decision making

capability to implement one of a number of alternative hardware control parameter

sets in an intelligent system. High level processing includes two types of processing:

one which provides a capability for the crew to control the vehicle or facility, and

one for internal systems control of all activities. Processing such as needed for

systems control, vehicle control, integrated logistics control, crew management, etc.

are treated as high level command structures (i.e., Command Application Programs),

which require interaction with humans and some capability to present alternatives
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to humans,and to interpret ambiguousresponsesfrom humans. Command

application programsprovide both typesof high level processing.Figure 2-4depicts

the processing architecture assumed which the Space Generic Architecture must

handle, and which the methodology for development must be capable of analyzing.

Figure 2-4. Potential Process Partitioning included by the Space Generic Architecture

2.1.1.3.3 Structure

• One of the purposes is to enable the creation of an open, generic, standard

architecture which can be tailored and reused for multiple missions. The

methodology will then provide guidelines for doing the tailoring to create mission

specific instantiations of the architecture. The reuse of the architecture and its

components will become the standard way of developing new space data systems.

• The basic architectural guideline for differentiating processing levels is based on the

philosophy of "Centralized Command and Decentralized Execution"

• The architecture must be a "shopping list" of all possible processes applicable to any

space vehicle or other-planet base.

• Some entity processes only apply to a specific class of vehicle. Such special entity

applications should be built into the naming conventions if feasible to more clearly

convey the dependency of the entity application to the specific platform. The

2.1-$



convey the dependency of the entity application to the specific platform. The

definition of entity names must use unique names for each entity for clarity and for

tool searching of dependencies.

• The software principles of abstraction, information hiding and modularity are

applicable to systems development and will provide the same benefits to

requirements analysis and system design as they do to software analysis and design.

Use of such principles will improve the maintainability and reusability of the

architecture developed and used as the example for this methodology.

Improvements in maintainability and reusability will not be aUowed to reduce the

requirements for performance which may be necessary; proof through architectural

simulations must be provided that performance of an architectural instantiation is

acceptable. Hard real-time constraints on system performance will exist and must be

met.

• A hardware architecture was assumed consisting of a core network, multiple general

avionics processors (GAP) elements not necessarily of the same type, multiple buses,

multiple multiplex data processing [GAP(M)] elements, embedded sensor processing

[EP(s)] and embedded effector processing [EP(e)]. This is represented in Figure 2-5.

The interface plugs shown represent the unique hardware interfaces which must be

defined by standards and handled in processing.

2.1.2 REFERENCE MODEL DEFINITIONS

Definitions of the terminology used in this architecture standard are contained in Appendix

A. The terminology is based on industry standards definitions wherever feasible.

Determination of the scope of architecture, avionics, systems, services and applications

depends to some extent on the definitions for these items since definitions can focus

attention or exclude attention. The reference model must describe information interfaces

using services available to an Application from the host Application Platform. It must

describe processing interfaces using services available internally to Applications Platforms,

meeting the requirements of Applications Software entities. Processing interfaces provide

the services commonly available to many applications, but not designed for just one

application.
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2.1.3 RELATED ARCHITECTURAL STANDARDS AND REFERENCE MODELS
FOR AVIONICS

2.1.3.1 PQSIX O oen System Environment

The POSIX OSE Reference Model, defined in [POSIX91], is the top level standard within

which the SGOAA must fit, as previously shown in Figure 2-1. The OSE Reference Model

enables application software portability at the source code level and application software

and system service interoperability between heterogeneous systems. This environment

will establish a set of specifications, standards and procedures common to all missions

which must operate concurrently, with inherent upgradeability. Definition of entities and

interfaces based on the OSE model can facilitate requirements definition for designs which

have the open and generic characteristics needed. This model is not an implementation

architecture; it is used to identify subsystems (entities in the model), interfaces between

subsystems, and services at the interfaces. Figure 2-6 depicts the OSE model

IO''rIOomm

User

Comm

Info
._ _ System

'_:.x _ :_ _'<___1

Info

Services
{APPLICATION

PROGRAM
INTERFACE
(API)

_ EXTERNAL
ENVIRONMEN"
INTERFACE
(EEl)

Figure 2-6. Open System Environment Model of Applications and Interfaces
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There are three types of entities used in the OSE Model: Application Software, Application

Platform and External Environment. Application Software (AS) is the set of processes, data

and associated performance parameters and documentation in electronic form related to

operation of a data processing system. An Application Platform (AP) is the set of services

and resources needed to run the applications. The External Environment (EE) is those

elements outside the boundaries of the entity of interest which need to exchange

information with the entity of interest. The external environment includes permanent

data stores, electronic communications entities and human entities.

Applications Software interfaces through the Applications Program Interface (APD to the

Application Platforms. The API interfaces are:

• User - An interface intended to provide access from the Applications Software with

the user by defining the services available to the applications software for exchanging

information with the user.

• Communications - An interface defining services available to the Applications

Software to exchange state and information with Applications Platforms or other

Applications Software.

• Information - An interface providing non-communications language bindings and

services to exchange state and information to be provided with the Applications

Platforms or with other Applications Software.

• System Services - An interface defining language bindings and services for available

internally to the Applications Platforms and not used by the Applications Software

for portability or interoperability with other Applications Software or Applications

Platforms.

Application Platforms interface through the External Environment Interface (EED to other

Application Platforms. The three types of interfaces used in the EEI are:

• User - An interface for physical access between the machine and human, providing

the 'look and feel" of the means of human interaction with the Application

Platforms.

• Communications - An interface providing language bindings for service for

connectivity and protocols for state and data interchange.

• Information - An interface providing language bindings for service using physical

and logical file structures, characterized by floppy media.
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TheOSE model, shown in Figure 2-6, using AS, APIs, APs, EEIs and the EE can involve

multiple subsystems. In the SGOAA, each subsystem application (e.g., GNC Control, C&T

Control and SOCS) is the Application Software. The central architecture consisting of

processing hardware and system services are the APs. The subsystem application to system

services interface is the API, which is implemented for communications through the SDSS

communications network services at the OSI layer 7. The AP (Le., avionics) to EE (i.e., the

users, hardware sensors, effectors and communications devices) interface is the EEI, which

is implemented for communications through the SDSS communications network services

at the OSI layer 1.

Section 2.4 discusses the relationships of the SGOAA Interface Model Classes to the POSIX

Model interfaces.

2.1.3.20SI Model

The OSI Reference Model [ISO7498] is a Network Services Model. Network Services is only

one resource of many competing resource processes provided by both the POSIX and

SGOAA Models. Applications gain access to POSIX Network Services via the POSIX API

Communications Services Interface and to SGOAA Network Services via the SGOAA Class

5 Interface (Applications Software-to-System Services Software). SGOAA Network Services

are discussed in more detail in paragraph 3.4.1.3. In the OSI model, applications gain access

to Network Services via an applications-to-services interface. Interfaces provided by

Network Services must be open network interfaces, protocol independent and provide for

network protocol interoperability. The POSIX OSE reference model focuses on the

requirements of application portability and system interoperability at the source code level

by addressing these objectives at the Applications Program Interface (APD and at the EEL

Internal Application Platform Interfaces are not addressed.

The OSI Model defines the Communications (Network) Services API and EEI interfaces of

the POSIX OSE reference model and the SGOAA Interface Model as shown in Figure 2-1.

The OSI Model expands upon the POSIX Communications Services Interface and SGOAA

Network Services by defining in great detail how Network Services Standards should work

and fit together. SGOAA extends the POSIX Model beyond the basic POSIX objectives by

defining six SGOAA interface classes, addressing application platform internal interfaces

and recommending additional data systems software specifically applicable to space based
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systems. Thecompatibility of theOSI model and the SGOAA InterfaceModel involves the

interface class relationships shown below:

• OSI Layer 1: This layer is the actual connection to the transmission medium,

handling the transmission and reception of raw bits across the medium. This is a

SGOAA Class 1 Hardware-to-Hardware Direct interface.

* OSI Layer 2: The interface between OSI hardware and software layers. This is a

SGOAA Class 2 Hardware-to-System Software Direct interface.

• OSI Layer 3: A software layer that accepts packets (or frames) of data from the

Transport Layer (software) and routes them to their destination over all necessary

links and intermediate systems as necessary. This is a SGOAA Class 4 System

Software-to-System Software Logical interface.

• OSI Layer 4: A software layer that provides reliable data flow between a sender and a

receiver while relieving these entities of the need for detailed knowledge of the

actual transport mechanism. This is a SGOAA Class 4 System Software-to-System

Software Logical interface.

• OSI Layer 5: A software layer that establishes communications paths between

systems and terminates them upon completion of transmissions. This is a SGOAA

Class 4 System Software-to-System Software Logical Interface.

* OSI Layer 6: A software layer that performs a translation function to convert

messages from a native format to an international standard format for transmission,

and from the international format to the native format upon reception. The

international format is a transfer syntax, a set of rules for the representation of data

while in transit between two presentation entities. This translation is performed by

Network Services on network data only and not to application data. This is a

SGOAA Class 4 System Software-to-System Software Logical interface.

• OSI Layer 7: Provides the interface between application programs and the network.

This is a SGOAA Class 5 System Software-to-Application Software Direct interface.

The OSI model does not address SGOAA Class 3 System Software-to-software (Local) Direct

nor does it address SGOAA Class 6 Application Software to Application Software Logical

interfaces.
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Much standardization effort has gone into all aspects of networking, especially those aspects

that are available at the EEL Effective networking standards at the external interface are

fundamental to providing system interoperability.
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2.2 SPACE GENERIC OPEN AVIONICS ARCHITECTURE REQUIREMENTS

These requirements are based in part on the generic open architecture requirements defined

in reference [BOE91]. These requirements provide a baseline for tailoring to a specific

mission or vehicle. Specific performance parameters from [BOE91] presented in Appendix

B are design requirements and as such are outside the scope of the SGOAA. Additional

requirements were added from other sources and experience to make the SGOAA as generic

and broad as passible.

The SGOAA shall be used to determine the interface points and requirements for the

control of, and information exchange between, onboard subsystems, support to the crew,

and effective interfaces between onboard and offboard systems. In accordance with system

requirements, a SGOAA compliant architecture shall meet open standards criteria.

2.2.1 REQUIREMENTS OVERVIEW

The SGOAA shad provide for the control and information processing of onboard

subsystems, support to the crew and effective interfaces between onboard and offboard

systems. A SGOAA compliant system architecture shag provide data acquisition, data

storage, data processing and data communication functions that interconnect architectural

elements as shown in the functional interface diagram (see Figure 2-7). The SGOAA shall

also provide the capabilities to implement, where required, data base access, electronic mail,

planning, training, simulation and monitoring of payload Interfaces. Architectures

developed in accordance with the SGOAA shag meet the requirements of [WRA93] for

developing new architectural elements and for using existing applications and mission

elements.

2.2.1.1 Open Systems Reouirements

An architecture developed in accordance with this standard shag satisfy the open systems

architecture definition incorporated in this standard. An architecture shall meet open

standards to insure access to the architecture for any vendor or agency desiring to propose

new uses and applications, and to facilitate competition to contain cost growth. The open

architecture so developed shall be capable of being readily expanded in functionality and

performance without redesign or significant modification to the existing system. An

architecture satisfying this standard shall provide information hiding, abstraction,

inheritance, modularity, robustness and extensibility.
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Control subsystemsmay be decomposedinto lower level subsystems.A control subsystem

usually implements a unique avionics capability.

2.2.1.2 Lower Level Standard Selection

Lower level standards developed by accredited standards development organizations

(which use an open forum) shall be preferred in selection over those standards developed

by bodies using a closed forum. Lower level standards shall be selected by the process of

developing a standardized profile. Architecture specifications for which there is no draft or

approved standard shall not be selected. One of the driving requirements for selection shall

be selection of a standard that provides the full range of services required to satisfy the

system applications. Other factors to consider in standards selection shall be degree of

openness in development, stage of completion, stability, compliance with national and

international standards, degree of satisfying a SGOAA service need, consistency with the

SGOAA and availability for implementation without restrictions.

Preference shall be given to existing mature standards, followed by emerging standards, and

only if necessary, followed by new standards. The order of selection within these

preferences is as follows:

• Approved standards developed by (a) accredited international bodies, (b) accredited

regional bodies and (c) accredited national bodies.

• Draft standards developed by (a) accredited international bodies, (b) accredited

regional bodies and (c) accredited national bodies.

• Recognized de facto standards and specifications developed by nonaccredited bodies

using an open forum.

• Approved standards and specifications developed by nonaccredited international

standards bodies using a closed forum.

• Approved standards and specifications developed by nonaccredited national

standards bodies using a closed forum.
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2.2.2 ARCHITECTURE FEATURES

Requirements for architectures compliant with the SGOAA consist of general guidelines for

developing new architectural elements and for using existing elements in tailoring

architec_es to specific applications and missions. Developing a capability to apply generic

or other standard architectures to new missions and vehicles is a key focus of SGOAA

requirements definition. Requirements for SGOAA compliant architectures also address

detailed, specific technical features which must be achieved by acceptable architectures. This

section describes the features which a SGOAA compliant architecture must provide:

Privacy and proprietary data will be handled by the SGOAA, with provisions and interfaces

for handling national security data requiring NSA-type protection requirements to be

optional.

2.2.2.1 Reouirements Architecture

An architecture prepared in accordance with this standard shall be an architecture that can

be tailored for design implementation based on actual system requirements.

2.2.2.2 Critical Interfaces

An architecture prepared in accordance with this standard shall provide flight, mission and

safety critical functions and interfaces.

2.2.2.3 Service Interfaces

An architecture prepared in accordance with this standard shall provide non-critical

support functions and interfaces, such as data base access, electronic mail, planning,

training, simulation and monitoring of payload interfaces.

2.2.2.4 Resource Control

An architecture prepared in accordance with this standard shall provide for control of system

resources used for control and information processing in onboard systems by use of system services

software as requested by application software through a standard interface.
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2.2.2.5 _0._I]11]._31_

The architecture shall be comprised of common hardware and software components to the

maximum extent possible. The SGOAA shall require the use of standard interfaces. Non-

common components or non-standard interfaces shall require a waiver from the procuring

agency.

2.2.2.6 Interface Standardization

An architecture prepared in accordance with this standard shall provide standard interfaces

and allow user definable interfaces where no standards exist or are not applicable. Interfaces

between hardware and other hardware entities shall be based on standards. Interfaces

between hardware and software shall be based on standards. Interfaces between system

services software and applications software shall be based on standards. Interfaces

prohibited in an architecture compliant with this standard shall include: (1) direct, non-

service task to task communications, and (2) applications to applications direct information

exchanges, which bypass use of system services. Special user definable interfaces may be

defined within the standards.

SGOAA allows external interface(s) for.

• gateway to/from non-SGOAA component

• bridge to/from non-SGOAA component

• data to/from Communications and Tracking

• onboard crew user interfaces

• transducer interfaces (sensors and effectors).

2.2.2.7 _.P..IL_L_.r_

For crewed vehicles, an architecture prepared in accordance with this standard shall enable

crew intervention, through multiple techniques, to safely override or inhibit automatic

flight, mission or safety critical functions. For uncrewed vehicles, the architecture shall

enable ground control station intervention to safely override or inhibit flight, mission or

safety critical functions.
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2.2.2.8 DoDendabllitV Manaoement

An architecture prepared in accordance with this standard shall manage dependability.

An architecture compliant with this standard shall provide at least health and status

monitoring and warning capability to monitor critical functions in onboard systems,

subsystems, components and crew. System service software BIT shall be incorporated into

software control modules. Hardware built-in-test equipment (BITE) shall be incorporated

into hardware modules. The interface between hardware BITE and health and status

applications software shall be through standard software services.

An architecture compliant with this standard shall provide at least operating modes for. (1)

mission ready, (2) operationally ready, (3) degraded, and (4) red-tagged.

2.2.2.9 Data System Services

An architecture prepared in accordance with this standard shall include requirements for

data system services. This shall consist of at least requirements for standard data services

management, network services management, data base management, data system

management, and an operating system.

The standard data servicesmanagement shallinclude at leastrequirements for standard

services data acquisition, standard services data distribution and reports generation. The

network services management shall include at least requirements for network services,

network management, remote operation, network directory service, and network

association control. The data base management shall include at least requirements for file

services, distributed file transfer services, file transfer access and management, and node

directory. The data system management shall include at least requirements for

configuration management, timing service control, initialization startup and

reconfiguration, and health status and fault detection and recovery. The operating system

shall include at least requirements for an OS kernel, an Ada run time environment (RTE)

and OS/RTE extensions.

An architecture prepared in accordance with this standard shall support onboard fault

recovery.
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2.2.2.10 Growth and Soare CaDacitv

An architecture prepared in accordance with this standard shall accommodate growth and

spare capacity in data storage, processing throughput, network throughput, input/output

and additional sensors/effectors as required by system documentation.

2.2.2.11 Modularity

An architecture prepared in accordance with this standard shall be modular.

2.2.2.12 _rvle_e Transparency

An architecture prepared in accordance with this standard shall be implemented with

sufficient transparency that the user will have visibility into the operation of services, but

not necessarily the implementation of services.

2.2.2.13 Technoloov TmnsDarencv

An architecture prepared in accordance with this standard shall be implemented with

sufficient transparency that technologies applied to design can be upgraded without revising

the architecture and without negative impact on the user.

2.2.2.14 Interooembllltv

An architecture prepared in accordance with this standard shall support interoperability by

providing standard interfaces between multiple programs.

2.2.2.15

The foUowing goals are desirable characteristics that a system architecture should possess.

They are not incorporated into the SGOAA Standard as they are not considered to be

mandatory requirements.

(1) An architecture should be sufficiently general and portable to be adapted and applied

to many missions, platforms and vehicles, meeting many operational requirements,

to enable designs for new missions to be prepared with less cost growth and with

more reasonable development schedules (by reusing existing architecture, hardware

and software components).
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(2) An architectureshould facilitate designstructureswhich canbeverified (by

establishing consistency and completeness across multiple platforms)

(3) An architecture should provide a basis for validating that systems and procedures

meet future space mission needs

(4) An architecture should ensure future space avionics systems can be upgraded and

maintained through use of modular interfaces and reuse of hardware and software

(5) An architecture should have integrated the end-user avionics and support data

processing and controls.

(6) The design and development approach should not unduly constrain the architecture

and its application.

(7) The architecture shall provide for optional capabilities selectable by the users during

design, such as event timing to sequence events as determined by application

requirements.

(8) The architecture shall facilitate migration of functions from offboard (ground or

node) to onboard components.

(9) The architecture shall provide for the separation of functions and resources for the

levels of functional criticality shown in Figure 2-8 and defined in Table 2-1. Note that

the notation and definitions in Table 2-1 are used throughout this section to

segregate functional requirements. The notations are as follows:

Flight Critical, Level I = FC1

Safety Critical, Level 1 = SC1

Mission Critical, Level 2 = MC2

* Utility, Level 3 = NC3
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Flight Critical (FC) Interface-g-, GNC
Propulsion Control
HMI (FC)

Utilities
I,

a.g,j

HMI Utility
Comm
Information Mgt
Electronic Mall

Flight Element 1

--Flight Element 2

Safety
Critical (SC)

Interface

a.g._

HMI (SC)

Mission

Crltlcal (MC)
Interface

e.g.,
Planning mode
Manipulators Comm &
Track Payload Services
HMI (MC)

HMI : Human-Machine Interface

Figure 2-8. SGOAA Functional Requirements

Table 2-1. Critical Condition Categories

Level

1

(hi_h)
I

Cate_lory
Right Critical

(FC)

Critical Condition

Loss of vehicle control results in loss of vehicle and
CI"CW.

Safety Critical Increase in hazard results in loss of vehicle, crew or
(SO) both

2 Mission Critical
(MC)

utility
(NC)

Incomplete mission results in mission abort or loss of

payload
No control loss or unsafe condition
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2.2.3 EXTERNAL INTERFACES

Section 2.2.3.1 contains the specification of requirements for the interfaces of a system

architecture with its external environment as derived from the SGOAA. The standard

interfaces shall include the direct/physical and indirect/logical interfaces to meet functional

system requirements.

Section 2.9_3.2 contains objectives for providing system capabilities that the development

team considered in development of the SGOAA.

2.2.3.1 External Interface Re0ulremonts

Portability, interoperability and standards usage are mandatory requirements included in

the SGOAA Standard.

2.2.3.1.1 Portability

Portability is accomplished by a standard interface between executive software and

application software. Direct physical interface application software to application software

communication is not allowed.

2.2.3.1.2 Interoperablllty

InteroperabiIity is provided by standard interfaces between software applications and

between application platforms. The standard interfaces include the physical, electrical and

optical interconnection and both the logical and physical functional interfaces.

2.2.3.1.3 Standards

The SGOAA will accommodate existing, emerging and new information technical

standards. The recommended selection of standards shall be consistent with the applicable

NASA standards such as NASA-STD 3000, Volume IV and shall also comply with the

[POSIX91] recommendations. A partial list of related standards is shown in Table 2-2.

Selection will draw from many different sources. The selection of lower level standards is

discussed in paragraph 2.9_1.2.
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Table 2-2. Partial List Of Related Standards

STANDARD

NO.

9945-1

MIL-STD-1553

X3.168

P1003.1

TITLE

Process Management

MIL-STD-1553 Multiplex

Application Handbook

SQL Standard Database Language

POSIX System Interfaces

SOURCE

International Organization for
Standardization and

International Electrotechnical

Commission (ISO/IEC)

United States Air Force

American National Standards

Institute (ANSI)

Institute of Electrical and

Electronic En_,ineers (IEEE)

2.2.3.2 _;_;OAA Development Interface Deflnltlon Oblectlves

In development of the SGOAA, it was a requirement to provide the SGOAA with the

capability to support the interfaces defined in this paragraph when applying the SGOAA to a

specific system design.

2.2.3.2.1 Human Interfaces

For occupied manned elements, the SGOAA shall provide interfaces for the following

avionics to human interfaces and resource capabilities.

(1) Onboard Human interfaces

Onboard crew interface to the avionics for assembly/checkout, pre-mission, mission

and post mission phases.

Real-time (FC1, SC1,MC2) processing and interface for controls and displays.

Processing and interfacing to controls and displays of critical non-real-time

functions (SC1,MC2).

Processing and interfacing to manned systems desktop functions and electronic

mail.

Resources and interfaces for application development and modifications.
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Manned monitoring of subsystem status.

Resources and interfaces for training and simulations

(2) Offboard Human Interfaces

Offboard human interface to the avionics for assembly/checkout, pre-mission,

mission and post mission phases.

An external control center command and control interface.

An external control center payload/cargo data interface.

2.2.3.2.2 Application Interfaces

The SGOAA requires that the onlyinterfaces an application has is through a standard

interface and the subsystems the application supports. No application-to-application

physical interface is allowed. The standard interface shall support messages, datagrams

(non-acknowledged messages), files and records. Critical real-time software must be

deterministic for both operations and for verification. Application data traffic for both

operations and for verification shall meet the priority requirements of Data Handling

Capability. The SGOAA shall provide the following support to applications:

Software support:

critical, real-time (FC1,SC1, MC2)

critical, non-real-time (SC1,MC2)
non-critical (NC3)

Hardware interface:

critical, real-time (FC1,SC1, MC2)

critical, non-real-time (SC1,MC2)
non-critical (NC3)

Operations access control-"

critical, real-time (FC1,SC1, MC2)

critical, non-real-time (SC1,MC2)

non-critical (NC3)

System health monitoring data for all onboard functions.
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2.2.3.2.3 Sensor Interfaces

The SGOAA shall support interfaces for the implementation of signal conditioning for

either analog or digital sensor signals. The SGOAA shall support either direct connection to

the sensor interface or through an intermediate network. The standard sensor interfaces

shall be of a data bus compatible, data bus non-compatible or high data rate type and shall

accommodate both real-time and non-real time data.

2.2.3.2.4 Effector Interfaces

The SGOAA shall support interfaces for the implementation of signal conditioning for

analog and/or digital effectors. The SGOAA shall support either direct connection to the

effector interface or through an intermediate network.

2.2.3.2.5 Payload/Cargo Interfaces

The SGOAA shall support a standard interface to payload(s). The standard interface shall

include:

A standard interface for the command and control of payload(s) and cargo.

Standard data communications from payloads and cargo to offboard interfaces.

Payload event timing for employment of each onboard payload.

2.2.4 SGOAA DEVELOPMENT FUNCTIONAL REQUIREMENTS

The SGOAA shall be designed to support systems based upon a modular building block

approach.

Instantiations of the SGOAA shall share common functional building blocks in order to

minimize the number of different types of functional building blocks. The SGOAA shall

provide standardized hardware interfaces for common functions. The SGOAA shall

provide standard Operating System interfaces for application software.
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2.2.4.1 process and Data Reoulrements

2.2.4.1.1 Message Transfer

The SGOAA shall provide the capability to implement multiple service grades for the

levels of criticality shown in Table 2-3 and for onboard users to request each grade of service.

RT is real-time service and NRT is non-real-time service.

Table 2-3. Message Transfer Service Grade

FUNCTION

FCI(RT)

MC2(RT)

MC2(NRT)

SCI(RT)

SCI(NRT)

NC3(NRT)

I

Required

Desired

Allowed

Required

Required

Allowed

GRADE

II

not allowed

Allowed

Desired

not allowed

not allowed

Allowed

III

not allowed

not allowed

Allowed

not allowed

not allowed

Desired

Three grades of data delivery service are to be supported, as defined in Table 24, among

onboard users and between users and Communications and Tracking (C&T).

Table 2-4. Message Transfer Service Grade Characteristics

CHARACTERISTIC
Error Detection

Out of Sequence Check

Erroneous Duplicate Check

Completeness Check

yes

yes

GRADE
II

yes
110

III

110

110

no no

110 110

2.2.4.1.2 Data Storage and Retrieval

The SGOAA shall provide for the support of standard data transfers within the SGOAA.

For transfers outside of SGOAA boundary, one end of transfer will be from a gateway or

C&T and other end will be SGOAA.
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TheSGOAA shall provide for support of a MassDataStorageCapability.

In support of file/record management, the SGOAA shall provide for support of Global

Standard File Naming and Directories.

In support of data base management, the SGOAA shall provide for local and remote access

to onboard SGOAA databases that is consistent with security and data privacy requirements.

The SGOAA shall provide for the support of an Electronic Mail Service standard.

2.2.4.1.3 Crew Common User Data _¢vlc_

The SGOAA shall provide for the implementation of resources and interfaces to support

the following manned flight crew common user data services:

• Monitor and control access interface to avionics for manual override or inhibit of

all functions.

• Monitor and control access [MC2(RT), MC2(NRT), SCI(RT) and SCI(NRT)]

interface to payloads for manual override or inhibit of all functions.

• Caution and Warning Displays [SCI(RT) and SCI(NRT)] interface for

audible/auditory/visual alarms.

• Utilities [NC3(NRT)]interfaces to support on-line help, word processing, mail,

calculator, spreadsheet, display processing.

• Unique avionics support to training [NC.3(NRT)]

• Unique avionics support to simulation, real-time [SC.3(RT)] and non-real-time

[SC3(NRT)] resources and interfaces for in-situ skill training.

2.2.4.1.4 Data Systems Management

The SCOAA shall provide for support of fully automatic operation for each mission phase

with human intervention via authenticated crew input.

For health and status reporting, the SGOAA shall provide the capability to implement data

gathering from all onboard functions.
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The SGOAA shall provide for the capability to implement safe power up and graceful

power down of avionics during initialization and shutdown.

The SGOAA shall provide the capability to control and manage avionics resource usage

based upon operations sequencing management and health/status. Support to

implementing control requirements for the following areas shall be provided:

• Avionics System configuration control

• Data System Services configuration control

• Avionics System caution and warning

• Integration and reconfiguration of avionics resources

• Network management

• Inventory and maintenance management

2.2.4.1.5 Application Processing Support

The SGOAA shall provide for support of application processing and inteffunctional

application data. Executable memory loads shall be divided between flight/safety critical

load, mission critical/payload load, and utility load.

2.2.4.1.6 Event Sequencing and Timing

The SGOAA shall support provision of an event sequencing and timing service interface.

2.2.4.1.7 Data Acquisition and Distribution

The SGOAA shall provide support of standard data reception, conversion, formatting,

transmission, validation and status for:

• Data bus compatible transducers

• Non-compatible type transducers

• Telemetry data formatting

• Instrumentation data acquisition

• High bandwidth data link(s)

• Time referencegeneration and distribution
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2.2.4.1.8 Data Handling Capability

The SGOAA shall provide for support of user access to user-provided transducers. The

SGOAA shall support distribution of payload data to onboard and offboard users through

either umbilicals or C&T. The SGOAA shall provide for support for on-line, rapid access

mass storage for payload and onboard use.

The SGOAA shall support transparent reception, transmission, processing, storage and

distribution of payload commands and data.

The SGOAA shall support implementation of flow and congestion control Flow and

congestion control is defined as the process for detection and correction of congestion in

order to prevent the congestion from propagating from a network into other networks.

The SGOAA shall support implementing a a priority system for message handling.

2.2.4.1.9 Test and Verification Support

The SGOAA shall support the ensuring of end-to-end functional correctness witldn the

SGOAA boundary. The SGOAA environment shall support the necessary tools, services,

diagnostics, built-in test equipment, on module built-in test, test plans, and facilities for

evolving flight element avionics from assembly, pre-mission checkout through mission

operation.

The SGOAA shall support avionics hardware reintegration (introduction of flight hardware

previously removed from operation) without requiring shutdown of the total avionics

system.

The SGOAA shall support implementation of the necessary tools for the crew to perform

onboard or offboard maintenance.
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2.2.4.2 Performance and Quality Encllneerino ConslderaUona

The following factors should be considered in any system design. The actual requirements

must be based upon mission needs. Development of the SGOAA shall be such that it does

not preclude support of these considerations. A SGOAA compliant system shall have as a

minimum the throughput and memory capacity margins shown in Table 2-5.

Table 2-5. Capacity Margins For Growth*

CONDITION

% Worst case memory usage of allocated
space within resource processor(s)

% Worst case usage of each target

processor

% Worst case channel throughput
allocation of each network

PDR

50%

5%

50%

CDR

65%

50%

65%

ACCEPTANCE

85%

65%

85%

*Source - SSP 30000, "Program Definition and Requirements Document"

2.2.42.1 Fault Tolerance

As a minimum, an SGOAA compliant system shall maintain normal operational state in

presence of:.

(1)

(2)

O)

up to two non-simultaneous faults for flight critical functions FCI(RT) within

the interface boundaries of the SGOAA.

one fault for mission critical functions [MC2(RT), MC.2(NRT)] within the

interface boundaries of the SC_AA.

no single avionics failure within the interface boundaries of the SGOAA shall

cause a safety critical (SC1) function to execute.

As a minimum, an SGOAA compliant system shall maintain normal operational state

during periods of in-space assembly and no single avionics failure shall cause a safety

critical (SC1) function to execute.
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As a minimum, an SGOAA compliant systemshall maintain normal operational state

during maintenanceactionsdefined as:

(1) one fault for flight critical functions [FCI(RT)]A

(2) one fault for mission critical functions [MC2(RT) and MC2(NRT)].

(3) no single avionics failure shall cause a safety critical (SC1) function to execute.

Non-critical avionics functions (NC3) shall fail in a safe mode.

2.2.4.2.2 Fault Detection, Isolation and Recovery

SGOAA compliant systems "Onboard Fault Detection Coverage" shall detect at least 99% of

faults during power-up and initialization, 90% of faults during background normal

operation, and 95% of faults during directed health monitoring tests. (These values may be

adapted to or superseded by specific mission requirements. For example, human-tended

systems will require considerable higher FDIR than automated, expandable systems.)

SGOAA compliant systems "Onboard Fault Isolation Coverage" for 100% of the detected

faults at the module level shall be at least 98% during power-up and initialization, 98%

during normal operation and 98% during directed health monitoring tests.

Onboard Fault Recovery TBD.

2.2.4.2.3 Reliability

SGOAA compliant systems shall achieve the Mean Time Between Critical Failure (MTBCF)

and Mean Time Between Failure (MTBF) as listed in table 2-6. Confidence factor is the

proportion of times that the parameter lies within confidence interval. The actual values

that are selected to replace the TBDs in the table will be design requirements, not SGOAA

requirements, and must be based on mission needs.
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Table 2-6. Reliability Requirements

FUNCTION

FC1

MISSION

RELIABILITY

(MTBCF_

BASIC

RELIABILITY

CONFIDENCE

FACTOR

TBD N/A 99%

MC2(RT) TBD N/A 95%

MC2(NRT) TBD TBD 95%

SCI(RT) TBD N/A 99%

SC1 (NRT) TBD TBD 99%

NC3 N/A TBD 95%

overall system TBD TBD 95%

2.2.4.2.4 Availability

SGOAA Availability is defined for two entities: A and Ai. SGOAA compliant systems shaU

achieve an availability for A and Ai as listed in Table 2-7.

Availability = A = (Uptime)/(Total Time)

= (Operating Time + Standby)

/(Total Mission Time - Dormancy Time)

Inherent Availability = Ai = MTBF/(MTBF + MTTR)

where:

Total Mission Time = Up Time + Down Time

Down Time = Mean Time To Repair (MTTR)

Dormancy Time is the time the system is in the Off Time, except possibly

for low level of monitoring
MTBF is Mean Time Between Failure

MTTR is Mean Time To Repair

2.2-20



The actual values that are selected to replace the TBDs in the table are a design requirement,

not an SGOAA requirement, and must be based on mission needs.

Table 2-7. Availability Requirements

FUNCTION

FC1

AVAILABILITY

(A)

TBD

(AI)

TBD

CONFIDENCE

FACTOR

99%

MC2 TBD TBD 95%

SC1 TBD TBD 99%

NC3 TBD TBD 95%

Overall System TBD TBD 95%

2.2.4.2.5 Maintainability

SGOAA compliant systems shall support maintainability during in-space checkout, mission

operation and on planetary surfaces, as required.

SGOAA compliant systems shall support achieving a Mean Corrective Maintenance Time

(MCMT) of no greater than TBD minutes (EVA) and TBD minutes (IVA).

The Mean Time To Restore system for SGOAA compliant systems shall not exceed TBD

minutes following a system failure.

As a minimum, the design of an SGOAA compliant system shall provide for modularity,

accessibility and BIT to enhance installation simplicity and ease of maintenance.

2.2-21





2.3 SPACE GENERIC OPEN AVIONICS ARCHITECTURE DETAILED

REQUIREMENTS DESCRIPTION

The SGOAA is based on partitioning between logical and direct requirements as illustrated

in Figure 2-9. The model is established to indude architectural functions, hardware,

software and interfaces for all avionics systems. This SGOAA requirements description

includes both system service software and applications software for the Space Data and

Operations Control Subsystems. Interfaces in this model are valid for both one platform

and multi-platform architectures on one or more vehicles. The SGOAA includes both

processing service software and applications software for the space data and operations

control subsystems as described in more depth later.

F:_::._ _i_-:_.'._:..:,_::_:__!_._ _,_-'._-_|I::::::i!_ _.::::_:::_::_._:_._:.::::.-:_$::::::.:_:_.'.:_.:-'::_:__..._:..'..._
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Figure 2-9. Logical System Requirements Flowdown to Direct Design Requirements

This model shall be used to define how system requirements are to be applied at the

appropriate system level to determine the logical and direct interface points. System logical

data flow requirements shall be created for each client/server entity addressing the data

attributes needed by that entity or needed to be provided for some other entity. The logical

data flow requirements shall identify the source of the data and the end-user needing the

data, as well as the characteristic attributes required of the data. Logical data flow

requirements shall not be concerned with the mechanism for implementing the data

interchange. Implementation related requirements for the interfaces are a direct interface

issue relating to the mechanisms provided for flowing the data from the source to the end-
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user. Sourcesof the design requirementsfor the interfaces,application platform hardware

and application platform servicesshall bederived from the Applications Software

requirements and their logical data attribute requirements based on the user's needs.

2.3.1 GENERIC SYSTEM ARCHITECTURE REQUIREMENTS DESCRIPTION

The SGOAA System Architecture Model shown in Figure 2-10 forms the basis for creating a

model of the system under development. The generic and open system architecture

proposed consists of processors which are standard, processors which can be tailored to

users applications and missions needs, multiple communications mechanisms, and

specialized hardware operating over standardized interfaces to the processors which

manipulate the data they receive or provide.

System architecture models shall consist of a functional definition of the types of processors

and communications paths required. The model shown in Figure 2-10 has three types of

processors interconnected by two types of communications. This model only shows one of

each type of hardware; the number of instances of each type of processor is variable

depending upon system unique requirements and may range for 0 to n. For example, a

centralized system architecture may look just like Figure 2-10, while a distributed system

architecture may have multiple General Avionics Processor (GAPs), Special Avionics

Processor (SAPs) and Embedded Processor (EPs). Either type of architecture may have many

core networks and/or local communications mechanisms. More than one sensor and

effector will usually be the rule in most non-trivial systems.

The processors shown in the system architecture in Figure 2-10 are a GAP for general

purpose processing, a SAP for specialized processing support (vector/massively

parallel/other), and an EP for the function of processing data within the sensor and effector

devices. The sensors and effectors shown in the example may also interact directly with the

main processors (the GAPs) or indirectly through EPs built into the sensors and effectors (ff

applicable).
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• Communications paths illustrated are of two types: core networks for interconnecting sets

of general processors or nodes, and local communications for interconnecting EPs and SAPs

with their supported GAPs and general purpose processing applications. System models

shall follow the general format of Figure 2-10, but shall be tailored to match individual

system requirements.

There are sensors and effectors which can either interact directly with the main processors

(the GAPs) or indirectly through the EPs built into the sensors and effectors (if applicable).

2.3.2 ARCHITECTURE INTERFACE MODEL REQUIREMENTS DESCRIPTION

An architecture compliant with the SGOAA Interface Model requirements shall consist of

six classes of interfaces as defined in Table 2-8. These classes are the levels of interfaces from

hardware up to high level systems which shall be completely defined in an architecture

developed in accordance with this standard. Definition of each interface class shall be in

accordance with the requirements contained in the following paragraphs.

The relationships of these interface classes to the POSIX Model is shown in Figure 2-11 and

Section 2.4 provides an in-depth discussion of the SGOAA relationships to the POSIX

Model

The following subsections descn'be each of these interfaces in more detail and provide

examples to clarify the use of these interface standard classes.

2.3.2.1 Class 1 - Hardware-to-Hardware Direct Interfaces

The Class 1 Hardware-to-Hardware Direct interface include three key aspects of the class 1

direct interface: the interface architecture, the generic processing external hardware

architecture, and the general avionics processor internal hardware architecture.
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Table2-8. Architectural InterfaceClasses

CLASS

1

2

DESCRIPTION

Hardware-to-Hardware Direct:

Class 1 hardware direct interfaces are the direct connections between

different types of hardware such as needed to enable buses and
communications links to address processors or needed to enable processors

to address memory registers.

Hardware-to-System Software Direct:

Class 2 hardware to system software direct interfaces are the direct

connections between hardware registers and system service software

drivers, such as needed to enable address registers to move data packets

from hardware to system service software, and service drivers which can

respond to the data packets.

System Software-to-Software O.x_cal) Direct:
Class 3 system service software to other software direct interfaces are the

direct connections between operating system service code and other local

software code sets, which enable operating system software to receive and

interpret data packets, and pass them on to other software code which will

process them locally.

System Software-to-System Software Logical:

Class 4 system service software to other system service software logical
interfaces are the indirect connections which enable local service software

to determine the address of the intended software in other local or remote

locations which need the register data being stored and to pass the data

appropriately. Enables the handling of logical data transfers from source to
user service

System Software-to-Applications Software Direct:

Class 5 system service software to applications software direct interfaces are
the direct connections which enable software service code to access and

process data from localapplicationsoftware code.

Applications Software-to-Applications Software Logical:

Class 6 applications software to applications software logical interfaces are

the indirect connections which enable an application originating data to

pass it to an application which needs to use the data, or enable an
application needing data to determine the source from which the data must

be obtained. These are logical data transfers from source to user. This

interface provides the indirect connections that allow applications in

different systems or in the same system to communicate, thus enabling

applications software to interact across system boundaries or within system

boundaries to accomplish a mutual purpose. These interfaces may be

applicable to applications executing in the same processor, in different
processors in the same node or in different systems.
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2.3.2.1.1 Hardware Interface Architecture Models

Hardware to hardware direct interfaces are shown in Figure 2-12. These interfaces consists

of the nuts, and bolts, chips and wires of the hardware architecture described previously.

With regard to the model, this interface consists of all the hardware to hardware interfaces

within each processing element, as well as the hardware interfaces to the external

environment by way of the core network, local communications or direct interfaces. This

architecture provides for three classes of processors: the EPs, SAPs and GAPs for which

standardized interfaces are required to be selected from a set of acceptible lower level

interface standards.

The GAP architecture can be configured to provide hardware components to interface to a

core network, to interface to local buses, to process applications, and optional components

for other purposes (such as serial input and output to direct analog and discrete links). The

SAP architecture can be configured to provide hardware components for control, filtering,

bus interface and other specialized purposes. The EP architecture can be configured to

provide hardware components for microcontrol, BIT, hardware handling and setup, and

bus interface. As shown in Figure 2-12, the GAP is the focus of efforts to standardize the

hardware processor support due to its general purpose nature.

This architecture can also be configured to provide communications capabilities from three

classes of communications: local communications within a subsystem between multiple

processors, core network communications between multiple subsystems or systems and

direct communications to embedded processors to sensors and effectors. The local

communications can be implemented by a combinations of buses and direct links for

analog, discrete or serial communications between subsystem elements or components.

Core networks can be implemented by high capacity buses such as FDDI or by direct links

between high data rate elements. The communications from sensors or effectors to EPs are

only possible through direct links because the intention of the architecture is that embedded

processors are those processors embedded in the sensor or effector hardware devices to

minimize the communications latencies since some of the sensors and effectors will have

very high data rates and very low tolerance to latency or time delays.
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The external GAP hardware interface standards needed are identified in Figure 2-13 for this

architecture. The interfaces are shown in black, and everything else has been greyed out of

focus (note that the resulting GAP internal architecture is shown in full, without greying, in

Figure 2-16).

2.3.2.1.2 Generic Processing External Hardware Architecture Models

The System Hardware Architecture is shown in Figure 2-14. The architecture core network

represents the inter-subsystem connectivity, and can be implemented by a combination of

one or more communications paths using point-to-point, ring, bus or other architecture

designs. Typically, core networks are implemented by lower level standards such as Fiber

Data Distribution Interface ¢FDDI) or Ethernet. Local communications provide the intra-

subsystem connectivity for high speed data communications between processors within one

subsystem. Typically, the local communications are implemented by lower level standards

such as MIL-STD 1553B for local command and telemetry data buses, RS-488 for timing

controls, and direct links for analog and discrete signals. The interface plugs shown

represent the unique hardware interfaces which must be defined by standards and handled

in processing.

GAPs represent the general purpose processing used by the embedded computer systems.

GAPs are allowed to be of two forms: one for standard general purpose use [GAP(S)] and one

for multiplexing and demultiplexing signals [GAP(M)]. Typically, GAP devices are used

where response times on the order of seconds to tens of seconds are required. An example

of a compliant implementation of GAP(S) processors is the Standard Data Processor (SDP)

in the Space Station Freedom program and the General Purpose Processing Element in the

F-22 program. An example of a compliant implementation of the GAP(M) is the Multiplex-

DeMultiplex (MDM) processor in the Space Station Freedom program.

SAPs represent the special purpose processing which is usuany needed in high power

embedded computers; these could be implemented by devices such as vector or associative

processors, massively parallel data processors, or arithmetic coprocessors. Typically, SAP

devices are used where response times on the order of hundreds of milliseconds to a second

are required. Examples include the associative and vector processors used in the F-22

program.
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Within eachsensoror effector,this architecture allows, but does not require, the placement

of processors embedded in the sensor or effector unit. An EP can be one of two forms: one

for effector processing [EP(e)] and one for sensor processing [EP(s)]. These embedded

processors provide the very high speed processing to manipulate and convert analog data to

digital data while performing some preprocessing on it to reduce the data rate to a more

acceptable level for linkage back to the GAPfl_I). Typically, EP devices are used where

response times on the order of milliseconds or less are required. Where the data rate with

the sensor or effector is acceptable to the GAP(M) and no other pre-processing is required,

direct interface to the GAP(M) may be used. Sensors and effectors interface to the EP devices

either through local communication interfaces or through direct links.

Lower level interface standards are used to define the options available in implementation

for the core networks, local communications, GAP to EP direct links, GAP to S direct links,

GAP to E direct links, EP to S direct links, and EP to E direct links. User definable interfaces

are provided for the SAPs. Lower level video and graphics interface standards are used to

define the options available in implementation for connecting the GAP devices to humans

for development, operation and maintenance of the systems.

The standard system architecture such as used in the Space Station can be overlaid with the

PC)SIX OSE interfaces, as shown by example in Figure 2-15. This is another way of looking at

the use of the OSE model. SDPs, MDMs and the Sensor and Effector Embedded Processors

are the host computers for the Application Platform and its services, as well as the

Application Software. Communications from the SDPs over the core network, local buses

and direct communications links are communications to other standard processing

elements, hence are external interfaces. Communications within each processor (whether

the SDP, MDM SP or the EP) is an internal interface (the API).
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2.3.2.1.3 Generic Processing Internal Hardware Architecture Model

Figure 2-16 presents a GAP architecture that is capable of being configured to satisfy the

requirements for general purpose processing elements in a spacecraft. The genetic

hardware elements shown in the figure comprise the basic, genetic hardware modular

elements in the SGOAA. The processor may be configured as a GAP(S) or GAP(M) as

illustrated in Figure 2-14 depending on the set of available functions required for the

specific application. The SAP is a special purpose case and may require functions not

included in the generic processor function set such as vector or parallel processing.

The GAP function set is a shopping list of modular functions which can be used to build the

needed configuration. Each module provides a specific independently procurable service.

Additional unique service functions may be added by defining additional modules. The

actual implementation in hardware is interface standard, technology and detailed design

dependant. System performance requirements for hardware modular elements shall be a

primary consideration in module selection to perform a specific function.

System Fault Detection, Isolation and Recovery requirements for hardware modular

element BITE shall also be considered in hardware modular element selection. Specific

hardware interfaces that are candidates for standards are shown in the figure. If modules

interact, specification of the interface between modules may be standardized or non-

standard. Interfaces between modules are processor internal interfaces. Standardization of

the internal interfaces provides portability and interoperability of the processor modules.

Certain interfaces between modules for special processing functions may be quite

specialized, complex and varied and as such may not be standardized.

Backplane bus interface standards shall be imposed to provide modularity with the

capability for technology upgrades and multiple vendor sources of processing functions

modules. Although only one bus is shown for the backplane in Figure 2-16, the actual bus

implementation may consist of multiple buses depending upon the specific application.

Possible buses include data, time, test, and local memory. Multiple standards exist for all of

these bus types. Bus interface standards provide for cost and schedule savings by using a

predefined standard interface as well as making common bus interface hardware useable in

all system processing elements. Use of Backplane Bus Interface Standards first requires

identification of the backplane bus function to be performed; in this case, the function

shown is the connection of processing elements across the backplane of a single board

2.3-14



computer. Similar type savingscanbe achievedby implementing standardsfor the other

interfaces labeled in Figure 2-16.

Lower level interface standards should be selected for network, test and checkout system,

mass memory, timing bus, discrete data, analog data, serial data, parallel data, local bus,

video/graphics, audio and optional functional growth interfaces. For example, to

implement the functions of the basic GAP(S) shown in Figures 2-13 and 2-14 would require

implementation of the network processing, application processing and local

communications (e.g., buses and I/O) processing functions of the GAP Hardware

Architecture shown in Figure 2-16. A backplane bus standard such as Future Bus Plus

(FB+), VME or Pi Bus would be imposed as the backplane data bus standard. The backplane

bus standard used in a specific architecture implementation might consist of one or more

specific buses; separate buses are permitted for uses such as test and maintenance.

2.3.2.2 Class 2 - Har0ware-to-Svstem Software Direct Interfaces

Hardware to system software interfaces are shown in Figure 2-17. These interfaces consist of

the interfaces from the system software drivers (Le. in the OS, data system manager, etc.) to

the hardware instruction set architecture (ISA) and register usage. With regard to the

model it is internal to each processing element. The hardware elements are grayed out to

show that these elements are a repeat of the previous figure; the black elements represent

the new capabilities and interfaces added by this interface class. This class defines the

interfaces for low level software drivers that interact with the hardware for each of the

processor types (EPs, SAPs, and GAPs). The drivers are hardware dependent, but this

enables the architecture to begin to partition out the hardware dependencies, which is a key

in providing for technology upgradability in the future. All the drivers for all processor

types are contained in the SDSS sub-architecture.
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The system services software for the GAP are organized into five categories, as discussed in

more detail in section 3. This categories are the Data System Manager, Data Base Manager,

Standard Data Services Manager, Operating System, and Network Services Manager. The

software drivers for the SAP are organized into four categories (preliminary): input/output

(I/O) formatting, normalization, specialized processing interfaces, and local

communications interfaces. The software drivers for the EP are organized into four

categories (preliminary): BIT, hardware handler interfaces, local communications interfaces

and microprocessor execution control. Note the naming convention between Figures 2-17

and 2-18. Interfaces identified in Figure 2-17 are labeled with a name (e.g., GAP-DRVR for

the GAP hardware to service drivers), and then these named interfaces are exploded in the

next figure (e.g., GAP-DRVR-OP, GAP-DRVR-MEM, GAP-DRVR-TC, etc) by adding a third

name to the first two which identifies the component driver of the interface.

The operating system interfaces needed for the hardware to drivers are identified in Figure

2-18. The interfaces are shown in black and labeled, and everything else has been greyed out

to highlight items of interest.

_v

2.3.2.3 Class 3 - System Software-to-Software (Local_ Direct Interfaces

System software to local system software service direct interfaces are the operating system

interfaces shown in Figure 2-19. These consist of the Input/Output handler calling

conventions and context switch conversions between the system software drivers on one

processing element interfacing with one or more system software services to provide for

local information exchange. The grayed out parts of the figure represent the material

covered in Classes I and 2, the black parts of the figure are the new material added in Class

3. Since Class 2 provided the software drivers to isolate the hardware, Class 3 provides the

remainder of the direct operating system interfaces to local software services needed to

operate the computer system. All local software services are grouped into the SDSS sub-

architecture, consisting of the Data System Manager, Data Base Manager, Standard Data

Services Manager, Operating System, and Network Services Manager. Class 3 provides the

direct interface between the local services for effective local interprocess communications

and support. These interfaces are direct interfaces because they enable software service code

to interact with software service code in other local entities. Class 3 interfaces meet derived

requirements based on the need of an application to support users.
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The operating system interfaces needed to implement system software-to-system software

direct interfaces are identified in Figure 2-20. The interfaces are shown in black and labeled,

and everything else has been greyed out to highlight items of interest. Note that there are

two types of interfaces: upward between the operating system services to any software

application (including other data system services), and downward to the drivers within the

operating system. The naming conventions (previously described) of using two

concatenated names for the higher named interface in the first figure, and three

concatenated names for the explosion path in the second figure, are also applied here.

2.3.2.4 Class 4 - System Software-to-System Software Looicel Interfaces

System software services to remote system software interfaces are shown in Figure 2-21.

This is the peer to peer interface of system software in one processing element (GAP,SAP or

EP) interfacing with the system software in the same processing element or in an external

processing element to coordinate operations in a distributed environment. The grayed out

parts of the figure represent the material covered in Classes I to 3, the black parts of the

figure are the new material added in Class 4. Since Classes 1 to 3 isolated the hardware and

software services in each processor, Class 4 adds the interface capability for services in one

processor to interact with services in another processor; this is the heart of multi-processor

capability needed in modern space avionics systems. EP services can interact with SAP and

GAP services; SAP services can interact with GAP services; GAP services can interact with

EP and SAP services and other GAP services. These interfaces are logical interfaces because

the service originating data is interacting with the service that will use the data fi.e., that

will transform the data into another form for a purpose). Class 4 interfaces meet derived

requirements based on the need of an application to support users in a multi-processing

environment.
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The data system services interfaces needed to support local operations and logical access to

other GAP data system services are identified in Figure 2-22. Although this diagram is busy,

a little study will reveal the underlying pattern. The black-line interfaces are the primary

interfaces between the local services. Local services and remote services have a common

logical architecture. Also, shown in Figure 2-22 is a circular interface between each service

entity and itself, since each service must be able to communicate with remote versions of

itself in other nodes. Finally, there are remote interfaces to the special avionics processor

and the embedded processor services not illustrated in this figure. The naming

conventions (previously described) of using two concatenated names for the higher named

interface in the first figure, and three concatenated names for the explosion path in the

second figure, are also applied here.

2.3.2.5 Class 5 - System Software-to-AoollcaUons Software (Lo_r__!_ Direct Interfa_,:__s

System software services to applications software interfaces are shown in Figure 2-23. This

is the direct interface within a processing element between the application software and the

system software (language bindings/specification) to allow provision of needed services.

The grayed out parts of the figure represent the material covered in Classes I to 4, the black

parts of the figure are the new material added in Class 5. Since Classes I to 4 isolated the

hardware and software services in all the processors, Class 5 adds the interface capability for

services in any processor to interact with an application executing in the processor. This

provides the basic multi-processor capability to meet actual user requirements in processing.

Applications can operate in any GAP, with potential partitioning of an application across

multiple GAPs. Similarly, applications can operate in any SAP or any EP. These interfaces

are direct interfaces because the applications software code is interacting with the service

software code. Class 5 interfaces meet derived requirements based on the need of an

application to support users in a multi-processing environment.
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The services to applications interfaces needed are identified in Figure 2-24. The interfaces

are shown in black and labeled, and everything else has been greyed out to highlight items

of interest. Note that all applications can be represented by one bubble since there should be

a standardized method of access to the data system services which is a function of the

service and is independent of any one application. The standard data services manager

shall be capable of providing access to other services as well as directly to the application or

sensor providing the source of data. The data system manager shall be capable of providing

control interfaces to other control subsystems. The naming conventions (previously

described) of using two concatenated names for the higher named interface in the first

figure, and three concatenated names for the explosion path in the second figure, are also

applied here.

2.3.2.6 (_lflss 6 - A ODIiCatlons Software-to-ADollcatlons Software Loolcal Interfaces

Applications software to applications software interfaces are shown in Figure 2-25. This is a

peer to peer information exchange and coordination interface between application software

modules. Applications may not communicate directly. All application to application

software communication must be implemented by use of system services software. All

communication is through a Class 5(P) standard interface to System Services which

provides the direct communications path between applications. This interface may be

between applications within a processing element or between applications in separate

processing elements. The grayed out parts of the figure represent the material covered in

Classes I to 5, the black parts of the figure are the new material added in Class 6. Since

Classes I to 5 isolated the hardware, software services and applications in any processor,

Class 6 adds the interface capability for an application in any processor to interact with

another application executing in any processor. Applications can operate in any processor

(i.e., GAP, SAP or EP), with cooperating interactions to support the needs of the users. This

interface is a logical interface to establish the requirements for information exchange from

one application to another, i.e., the application originating data is interacting with

applications that will use the data (Le., that will transform the data into a form useful to the

user or to another application for a user's ultimate purpose). Class 6 interfaces meet user

and derived requirements based on the need of multiple applications to support users in a

multi-system environment.
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Applications to Applications interfaces can also include interfaces between applications in

two different systems or vehicles. Thus, System A applications software to system B

applications software interfaces are shown in Figure 2-26. This is the interface for exchange

of information between the space avionics system and another avionics system for overall

command and control. This interface is at the mission level and may be an information

exchange between the ground or between separate space vehicles. The grayed out parts of

the figure represent the material covered in Classes 1 to 6 (within one system), the black

parts of the figure are the unique material added to Class 6 for inter-system interfacing.

Since Classes I to 5 isolated the hardware, software services and applications in any system,

Class 6 adds the interface capability for an application in one system to interact with an

application executing in another system. Class 6 interfaces shall meet user and derived

requirements based on the need of multiple applications to support users in a multi-system

environment, comprising multiple systems, facilities or vehicles. Applications can operate

in any system's processor (e.g., the Mission Control Center GAP or workstation) to

cooperate with applications in another system's processor (e.g., the Lunar Transfer Vehicle

GAP). The interfaces are logical interfaces because the application originating data is

interacting with applications that will use the data in another system, facility or vehicle (i.e.,

that will transform the data into a form useful to the user or to another application for a

user's ultimate purpose). Class 6 interfaces meet user and derived requirements based on

the need of multiple applications to support users in a multi-system environment. They

meet the overall mission and operational control requirements across multiple facilities

and vehicles. With regard to the hardware architecture, the communication gateway might

be a SAP configured as an RF Communication Processor or a SAP configured as a Network

Gateway.
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2.4 SGOAA RELATIONSHIPS TO POSIX

As discussed in 2.1.3.1, the top level standard within which the SGOAA was designed to fit

is the POSIX OSE Reference ModeL The SGOAA extends the POSIX Model beyond the basic

objectives of application software portability at the source code (API) level and system

interoperabiRy and data portability at the EEI by defining the POSIX interfaces in terms of

five SGOAA interface classes (the sixth SGOAA class, Class 2 is an internal interface only),

addressing certain Application Platform internal interfaces and recommending additional

data system services software specificany applicable to space based systems. User interface

look and feel as addressed by POSIX is not presently addressed in the recommended SGOAA

standard. The SGOAA is at present primarily oriented toward space based data systems. It is

planned that user interfaces be included as a future update.

The tK)SIX model does not address Application Platform internal interfaces as does the

SGOAA. The rationale given in [POSIX91] is that these interfaces have no direct impact on

the external interface of a system or the application program interface to the system. System

Internal Interfaces are beyond the direct scope of POSIX because they do not directly impact

application portability or system interoperability. In addition, there is very little consensus

on the partitioning of the platform into components and the consequent allocation of

functions to each. In fact, as stated by [POSIX91], this aspect of system design is in a constant

and accelerating state of innovation and has been for decades. One of the major objectives

of the tK3SIX API is to decouple the application software from the constantly changing

platform. The internal interfaces are not visible to the application software at the API.

Section 2.4.1 provides an overview of POSIX with regard to the SGOAA and section 2.4.2

discusses the relationships of the SGOAA interface classes to POSIX. Figures 2-2 and 2-11

illustrate these relationships. Recommendations are also made with regard to the

development of interface standards and to the development of generic open architecture

specifications for certain additional Application Platform Language Independent Services.

2.4.1 POSIX OVERVIEW

2A.1.1 ApDIIcatlon Platform

The Application Platform as shown in Figure 2-11 provides services at the interfaces that,

as much as possible, make the implementation specific characteristics of the platform

transparent to the application software. All application software entities must access all

platform resources via service requests across the Application Platform Interface (API).
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Examples of Application Platform elements could include an operating system, a real-time

monitor program and all hardware and peripheral drivers. Also included are the SCK)AA's

Data System Manager, Data Base Manager, Network Services Manager and the Standard

Data Services Manager which fall under the category of POSIX Language Independent

Services. Application Platform internal interfaces are outside the scope of the POSIX model.

The SGOAA defines parts of Class I(P), 2(P), 3(P) and 4(L) as Application Platform internal

interfaces.

2.4.1.2 Aoollcatlon Proaram Interface (API_

This is the interface between the application software and the application platform across

which all services are provided. It is defined primarily in support of application portability,

but system and application software interoperability also are supported via the

Communication Services API. The API as defined in POSIX consists of the following parts:

• Communications Services API

• Information Services API

• Human/Computer Interaction Services API

• System Services API

The POSIX Communications Services APL PC)SIX Information Scrvi¢_ API and the POSIX

System Services API are required to provide the application software with access to services

associated with each of the external environment entities.

2.4.1.2.1 POSIX Communications Services API

The POSIX CommunicatiOns Servi¢_ API is concerned with the interfaces and associated

standards that apply to the interface between the application software and the application

platform for the provision of communications services to the application software. POSIX

is in the process of developing several standards to address this interface. In the SGOAA

Standard Data System Services Architecture the provision of communication services is

assigned to the Network Manager. This is a SGOAA Class 5 interface.
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2.4.1.2.2 POSIX Information Services API and EEl

The POSIX Information _ervices API is concerned with both Database Management and

Data Interchange Services.

A. Database Management Services are provided in the SGOA.A by the Database

Manager. For portability and interoperability, an application using a database

must be isolated from the hardware and software retrieval methods as much as

possible. The Database Manager provides services to the Application Program

via the Data base API. There are currently four database standards, either

completed or under development.

B. POSIX Data Interchange Services provide specialized support for the exchange of

data between applications or components of applications. Data interchange

standards should define direct formats, data formats, code sets, and data

descriptions that are consistent across all implementations of the POSIX Open

System Environment to ensure that data can be exchanged between related

application software. Data Interchange Services are provided in the SOOAA by

the Standard Data Services Manager. These services can be divided into Data

Interchange Service API and Data Interchange Services EEL

(1) The Data Interchange API provides an interface from the Application

Software to the Application Platform for requesting that specific data be

transferred using the EEI services. Little work has been done in developing

standards for this interface. No general standards presently exist. This is a

SGOAA Class 5(P) interface.

(2) The Data Interchange EEI provides an interface from the AppIication

Platform to the EE to support data interchange for storage and retrieval of data

using the formats and protocols provided at the Data Interchange EEL

Standardizing character sets and data representation is crucial to providing

effective data interchange between application software operating under

differing language and cultural conventions (internationalization).

Standardizing data format protocols protects applications from hardware

and/or software differences between environments by ensuring that data

remains stable when moving between environments. Data format protocols

are fairly well standardized and offer several general standards. This is a

SGOAA Class I(P) interface.
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Standardizingdatadescription protocolsprovides the ability to sharedata

between relatedapplications,evenif they were not specifically written to

cooperate. To date, most standards in this area have limited themselves to

specific application areas and no gmeral solution has been provided. This is a

SC_AA Class 4 (L) interface.

2.4.1.2.3 POSIX System Services API

The POS]X System Services API provides access to the platform internal resources and via

the POSIX EEl Communications Services API to the internal resources of other platforms.

In order for the platform to protect system integrity and ensure system database consistency,

the application software must access all system resources via system service requests. The

formal definition of these requests defines the system services portion of the APL The

resources provided may be divided into two types of specifications; i.e., Language Service

and System Service Specifications. These specifications are defined as follows:

A. POSIX Programming ban_uage S__:ifications - Defined by POSIX as the

specifications associated with the language such as program control, math

functions, string manipulations, etc. A consistent interface to the operating

system is essential for applications portability. In addition, the application should

be developed using language supported by a standard (preferably international)

and system development tools such as a language certified compiler to achieve

source code portability. The SGOAA does not address this specification type.

B. Language.Independent Service Specifications - Consists of POSIX defined services

provided to the application software by the underlying application platform

internal resources and independent of any programming language. Examples

include interprocess communications, interobject messages, access to the user

interface, and data storage. Specifications for these services are defined

independently of any programming language, and are identified as language-

independent service specifications. SGOAA defined services expand this

definition and add the Standard Data Services Manager and the Data System

Manager. The Standard Data Services Manager is the system services interface

from the Applications Platform to the Applications Software for all Application

Platform Services. The functions of the Data System Manager are discussed by

POSIX under Information System Management and are categorized as an OSE

Cross-Category Service. Cross-Category Services are those that may influence

and/or impact other parts of the POSIX architectural building blocks.
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The threeadditional SGOAA SDSSManagers(Network, Database, Operating

System) defined by the SGOAA are addressed by POSIX and partitioned to other

parts of the API. The SGOAA Database Manager is addressed by POSIX

Information Interface Services and the SGOAA Network Services Manager by

POSIX Communications Interface Services. The Operating System is addressed by

System Services. The purpose of the first in a set of planned POSIX standards,

ISO/IEC 09945-1 (IEEE 1003.1) is to define a standard Operating System interface in

order to support application portability at the source level.

The Guide to the POSIX Environment [POSIX91] Section 4.2 discusses the emerging

standards that are being developed to satisfy the system service requirements. With regard

to the SGOAA Interface Model, this API consists of the following two interface classes:

A. The Operating System to Other code fi.e., Services or Applications) is a SGOAA

Class 3 interface.

B. All other System Service Software to Applications are SGOAA Class 5 interfaces.

2.4.1.3 External Environment

The EE comprises the external entities with which the application platformexchanges

information. These entities are classified into the general categories of human users,

information interchange components and communication components.

2.4.1.4 External Environment Interface (EEB

The three services present at the EEI are Communications Services, Information Services,

and Human/Computer interaction Services.

2.4.1.4.1 POSIX EEl User Interface

This is the boundary across which physical interaction between the human being and the

application platform takes place. Example services across this interface include CRT

displays, keyboards, mice, and audio input/output devices. This is a SGOAA Class I (P)

Interface.
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2.4.1.4.2 POSIX EEl Information Interface

This is the boundary across which external persistent storage service is provided, where the

Data Description Protocols and Data Format Protocols are required to be specified for data

portabiIity and interoperability. This is a SGOAA Class I (P) Interface where Data Format

Protocols are a hardware function. Data Description and Data Format Protocols (software)

place this interface into Class 4 (L) for System Software-to-System Software

communications. Data Description Protocols place this interface into Class 6 (L) for

Application-to-Application communications.

2.4.1.4.3 POSIX EEl Communications Interface Services

This is the interface that provides access to services for interaction between internal

application platform software entities and application platform external entities such as

application software entities on other application platforms, external data transport

facilities, and devices. The services provided are those where protocols and formats must

be standardized for interoperability.

This hardware-to-hardware direct interface is a POSIX EEI interface and a SGOAA Class I (P)

interface. The standards at the EEI will be in several areas such as physical connections,

network protocols/formats and distributed system services. Much standardization work

has gone into the aspects of networking that are available at the EEL The standards selected

at the EEI will impact system interoperability, but may also have an effect on application

portability, because certain applications may require particular types of network access to

function.

The interface from the software driver to the communication hardware (Hardware-to

System Software Direct) is an Application Platform internal interface defined as an SGOAA

Class 2 (P) interface.
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API:

Table 2-9.

POSIX

INTERFACES

System Services
Communications Services

Information Services

SGOAA Relationshil_s to POSIX

SGOAA CLASS

1 (D) 2 (D) 3 io)

X

4 ILl 5 (D)

X

X

X

6 (L)

X

User Services X

EEl:

Communications Services X

X X X

X

Information Services

User Services X

AP Internal:

Backplane Bus X

System SW to System SW X X

HW to System SW

2.4.2 SGOAA INTERFACE CLASS RELATIONSHIPS TO POSIX

The POSIX OSE Reference Model is the top level standard within which the SGOAA must

fit. Table 2-9 shows the SGOAA Interface Class relationships to the POSIX Model interface

definitions. The following paragraphs discuss the rational for establishment of these

relationships.

2.4.2.1 Class 1 Hardware-to-Hardware Interfaces (DIRECT1

SGOAA interface definitions and standards requirements identification activity are not

recommended to be limited to only those interfaces defined by the POSIX model. Hardware

modularity and portability in addition to the application software portability and

interoperabLlity addressed by POSIX should also be considered. In order to provide

programs access to multiple sources of hardware components and to enable maintainability

and technology upgrades of application platforms over extended life cycles, especially in the

case of space avionics, it is recommended that the Application Platform internal hardware

interface standards for the SGOAA Class 1 "Backplane Bus" interfaces shown in Figure 2-16

be imposed. These standards should not be imposed to place unnecessary constraints on the

platform design, rather they should be imposed to require vendors to select a bus that has
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platform design, rather they should be imposed to require vendors to select a bus that has

wide industry support. The Network Interface, Local Communication Interface, and the

Sensor/Effector interface shown in Figure 2-12 are all SGOAA Class 1 interfaces and fall

within the definition of IK3SIX EEI Communications Services interfaces. It is recommended

that standards be established for the following SGOAA Class 1 interface_

• Backplane Bus (Application Platform Internal Interface)

• Network Interface (POSIX Communications EEI)

• Local Communication Interface (POSIX Communications EED

• Special I/O Processing - Sensor/Effector (POSIX Communications EED

It is not recommended that an interface standard be applied to the Instruction Set

Architecture flSA) as shown in Figure 2-16 (Application Processing Logical Standards). The

technology is changing too rapidly and imposing such a standard would place undue

restrictions on the design of the application platform. Compliance to POSIX and an

approved "Backplane Bus" standard will enable selection of the best ISA Standard

implementation to satisfy system requirements and also achieve the hardware

maintainability, upgradeabilty and portability objectives.

IK)SIX EEI Information interface Data Format Protocols are a Class I interface where

implemented in hardware.

The POSIX EEI User Interface is the boundary across which direct interaction between the

human and Application Platform takes place.

2.4.2.2 Class 2 Hardware-to-System Software Interface (DIREC'Irl

This interface is that of the Operating System (OS) binding of the hardware driver software

to invoke platform services as shown in Figure 2-18. It is an interface internal to the

Application Platform. The Standards for this interface can be separated into the OS

Standards and the Hardware Interface Standards for a specific hardware implementation.

The hardware interface standards referenced in Class I must be definitive as to the software

driver interface requirements needed to communicate with that hardware. Each OS

Specification/Standard must specify the software interface binding requirements for

"plugging" a driver into the OS. POSIX defines this interface as a '1,ayering" or Redirection"

service. It is recommended that a interface standard be developed for the OS binding to
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softwaredriver side of this interface. Defining a standardfor this interface is not presently a

part of the POSIX standardization activity.

2.4.2.3 Class 3 System Software-to-Software (Local DIRECT)

This interface is included in the POSIX API, the interface between the Application Platform

and the Application Software against which aU platform services are requested and

provided. It is defined primarily in support of Application Software portability.

The System _%rvices API provides access to services associated with the Application

Platform internal resources. The System Services API is classified as a SGOAA Class 3

interface as illustrated in Figure 2-20 as the Application Software has a direct direct interface

to Operating System Services. This distinction is made since the SGOAA architecture

separates Operating System Services (SGOAA Class 3) from other System Services (SGOAA

Class 5). SGOAA Class 3 is also classified as a POSIX Application Platform Internal Interface

due to System Services Software having a direct direct interface to Operating System

Services.

2.4.2.4 Class 4 System Software-to-Svstern Software Interfaces (LOGICAD

This is the internal interface for transfer of data between Application Platform Language

Indep_nd_mt System Services as illustrated in Figure 2-22. It is recommended that an

interface standard specifying data description protocols be developed to provide Lanenage

Independent _ystem Services data portability and interoperability. This is also the external

logical interface between Language Independent System Services on the Application

Platform with Language Independent System Services on other Application Platforms. For

example, this is the logical interface between the Data Base Manager in a Application

Platform communicating with the Data Base Manager in another platform. An example for

the Space Station Data Management System (DMS) is a user requesting a file transfer by way

of the RODB in a Standard Data Processor (SDP) which requests the service to be performed

by the file transfer server in the Mass Storage Unit (MSU).

POSIX EEI Information/Data Interchange Services data description protocols are defined as

SGOAA Class 4 for data interchanges between System Services Software both within and

between Application Platforms. These services provide the ability to share data between

related System Software entities, even if they were not meant to specifically cooperate.
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Building upon the Data Format Protocols and Character Sets and Data Representation

Protocols defined as Class 1, these data description protocols provide a means of associating

a name or other identifier with the individual data elements in a standard manner. Most

standards developed in this area have limited themselves to specific application areas with

no general solution provided.

2.4.2.5 System Software-to-Aoollcatlon Software Class 5 (DIRECT)

The SGOAA Class 5 Interface is shown in Figure 2-24. This interface is the POSIX API, the

interface between the Application Platform and the Application Software against which all

platform services are requested and provided. It is defined primarily in support of

Application Software portability. System and Application software interoperability are also

supported by the Communications Services API. There following four APIs are in this

POSIX interface:

System Services API

Communications Services API

Information Services API

Human/Computer Interaction Services API

All of the preceding APrs are SGOAA Class 5 interfaces. The System Servic_ API provides

access to services associated with the Application Flatform internal resources and the other

three APIs provide the Application software with access to services associated with each of

the EE entities. The System Services API is also classified as a SGOAA Class 3 interface as

the Application Software has direct direct interface to Operating System Services. This

distinction is made since the SGOAA architecture separates Operating System Services from

other System Services.

_j

2.4.2.6 Class 6 AoDIication Software-to-Aoollcatlon Software (LOGICAD

2.4.2.6.1 Local or Node Applications Software Interfaces

Figure 2-25 illustrates SGOAA Class 6. This is the internal interface for transfer of data

between Application Software within an Application Platform and as such is a POSIX

Information Services API interface. This is also the external logical interface between

Application Software on the Application Platform with Application Software on other

Application Platforms and as such is a POSIX Information Services EEI interface. It is
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recommended that interface standards specifying data description protocols be developed to

provide Application Software data portability and interoperability.

POSIX EEI Information/Data Interchange Services data description protocols are defined as

SGOAA Class 6 respectively for data interchanges between Application Software both

within and between Application Platforms in the same system and in external systems.

These services provide the ability to share data between related Application Software

entities, even if they were not meant to specifically cooperate. Building upon the Data

Format Protocols and Character Sets and Data Representation Protocols defined as Class 1,

these data description protocols provide a means of associating a name or other identifier

with the individual data elements in a standard manner. Most standards developed in this

area have limited themselves to specific application areas with no general solution

provided.

2.4.2.6.2 System-to-System Applications Software Interfaces

As shown in Figure 2-26, this is the external logical interface between Application Software

on an Application Platform in a system with Application Software on other Application

Platforms in external systems and is a POSIX Information Services EEI interface. It is

recommended that interface standards specifying data description protocols be developed to

provide Application Software data portability and interoperability.

POSIX EEI Information/Data Interchange Services data description protocols are defined for

data interchanges between Application Software running on a Application Platform in one

system with Application Software running on Application Platforms in one or more

external systems. These services provide the ability to share data between related

Application Software entities, even if they were not meant to specifically cooperate.

Building upon the Data Format Protocols and Character Sets and Data Representation

Protocols defined as Class 1, these data description protocols provide a means of associating

a name or other identifier with the individual data elements in a standard manner. Most

standards developed in this area have limited themselves to specific application areas with

no general solution provided.
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3. THE SPACE GENERIC OPEN AVIONICS ARCHITECTURE APPLIED

Development of the architecture reference system model, hardware model and interface

class model were discussed in Section 2. Development of lower level detailed SGOAA

functional architectures is discussed in this section. Development of the SDSS Subsystem

and SOCS functional architectures were parallel tasks. Each nourished and provided reality

to the other. The following ground rules were established for the functional architecture

developments:

• The architecture analysis will be based on mission needs in an integrated approach.

• The architecture must be an open generic architecture that can be applied to multiple

space missions and programs.

• An open architecture should be applied down to the module level where possible.

• The architecture must be a modular architecture in which the elements are

autonomous, coherent and organized in a robust structure. Robustness is the ability of

systems to continue functioning under abnormal conditions.

• The architecture must provide systems with the extensibility to be extended or adapted

to new conditions, changes in specifications or new technology.

• Differentiation between processing levels will be based on the philosophy of

"Centralized Command and Decentralized Execution".

• The architecture must be a "shopping list" of all processes applicable to any space vehicle

or other planet base.

• This architecture will be compatible with the avionics software POSIX OSE Reference

ModeL

With regard to the OSE Reference Model [PRU90] and [POSIX91], there are three types of

entities used in the OSE model: Application Software, Application Platform and External

Environment. The four types of interfaces defined in the OSE are user, information

exchange, communications, and processing. Definitions of the OSE entities and interfaces

are discussed in Appendix A of this document. The six classes of SGOAA interfaces

described in Section 2.3.2 of this document titled "Architecture Interface Model Description"

are referred to throughout this section.
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This sectiondiscussesthe development of the Space Generic Avionics (SGA) Core

Functional Architecture using the model described in Section 2.3, describes the detailed

subsystem functional architectures (i.e., subarchitectures) developed and provides functions

and data flows for two of the key integrating subsystems, the SDSS and the SOCS. It also

provides application examples where the SGOAA could be applied to real world space

avionics.

3.1 POTENTIAL SPACE GENERIC AVIONICS FUNCTIONS

The first step in defining space generic avionics functions was to gather together space

platform related processes, events, major data items, and any other information which can

be used to identify logical groupings (i.e., entities) of information handling. These groups of

information define user needs for processes and the related data being processed. Multiple

space program experience of the architecture study participants was used to research Space

Station Freedom and Shuttle sources and identify/document the required data. The results

of this research activity is shown in Figure 3-1, a table of space system user processes

grouped together by subsystem function. These processes are not intended to be a definitive

list of all space processes, but are a functional checklist of processes against which the

subsequent requirements, analyses and the resulting generic avionics architecture can be

compared to determine if all "traditional" space functions are accounted for or

accommodated.

This functional checklist also suggests some of the partitioning into higher level entities. A

vehicle control entity appears needed to coordinate the subsystem applications operating on

the vehicle and to supervise their activities. This vehicle control system would also

provide a means of human operator coordinated control over all vehicle applications or

operations. It also suggests that another higher level function needed is one of operations

control to coordinate all activities and processing inside the space vehicle with each other

and with outside activities and processes. The operations control layer would also provide

the place for logic "glue" as needed to enable the activities and processes to respond to

external intervention from the crew or remote commanding.
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Theshadowedelementsin Figure 3-1 representa shoppinglist of functions required in

present space vehicles fi.e., Space Station Freedom or Space Shuttle) data management or

processing systems. Note that this structure does not correspond exactly to the station

software partitioning, and is not precisely the same as the implied partitioning in [JSC

31000]. The purpose of the structure is to focus attention on data service requirements and

related or ancillary processing requirements.
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3.2 DATA AND CONTROL FLOW DIAGRAM CONVENTIONS

The architecture that is described in the following paragraphs is represented by merged data

and control flow entity diagrams. These diagrams are often referred to as process flow

diagrams, which are somewhat different in fact. This architectural discussion will use

bubbles to illustrate and describe the process entities. In the "Hybrid Object Oriented

Structure Analysis" process used to develop this architecture and described in reference

[WRA91], abstracted processes and data are referred to as entities to distinguish them from

the object oriented analysis (OOA) objects. The process entity bubbles may represent either

data processes or control processes. Although referred to as data/control flow entity

diagrams, the bubbles are thought of as entities (with noun names) to clarify that they

encompass more than just data or control processes, and include other requirements more

related to object oriented development as described below:.

• Definition of objects is by abstracting the processes and data, and establishing the services

which operate on the data based on Inputs to the object.

• Data attributes are defined for each object and similarly for each hybrid approach entity.

• Services are the processes performed as a result of messages received by the object. In the

hybrid approach, services are more system process oriented.

• OOA suggests the use of assemblies which are component parts of an object broken

down into lower level objects; this is similar to the hybrid approach's structured

breakdown of entities into entities at lower levels or sub-entities.

• The hybrid approach allows only one class membership, namely that higher level entity

which spawns the sub-entity.

• Information hiding is achieved in the hybrid approach by defining external interfaces

and services for each entity which are the only access points for that entity.

• In the Hybrid Object Oriented Structural Analysis approach, inheritance is achieved by

defining that the requirements for an entity automatically apply to all lower level

entities. If a requirement does not automatically extend to all lower level entities, then it

would not show up at the higher level, but would only be attached to the lower level

entities to which it applied.
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3.3 FUNCTIONAL ARCHITECTURES

Figure 3-2 defines the boundaries of the SGA Core Functional Architecture. The SGA Core

Functional Architecture consists of the avionics systems as a black box surrounded by

external elements with which it interacts. The black box consists of all hardware, software

and other electronics needed to control and operate the space vehicle, and provides the

coordinated functionality for end-to-end processing in handling the information needed to

use the black box's elements, to control its interaction with its environment and to respond

to human commands. The SGA black box provides the capability to meet the top level user

requirements.

[ CREW I

Comrn

Subsys

B Primary

Avionics
Support

Avionics

Figure 3-2. Space Generic Avionics Core Functional Architecture

Within the black box are the primary functional entities which enable the avionics to

support the mission and sustain the crew. These primary functional entities include the

traditional applications control subsystem entities consisting of Electric Power;,

Environment and Life Support; Payload Operations; Guidance, Navigation and Control;

and the Communications and Tracking Control Subsystems. The typical support avionics

are shown with bold outlines, some of which are core avionics and some of which serve

specialized non-core functions. The core avionics functions that are also bolded in the

figure are the SOCS application (which integrates all activities from the traditional

applications control subsystems to serve the crew), the SDSS subsystem (which provides
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applicationscontrol subsystemsto serve the crew), the SDSS subsystem (which provides

data processing and data communications support to all the traditional and operations

control subsystems), and the Display and Control subsystem (which enables the crew to

interface with and direct the avionics). Development of the functional architectures for the

SOCS and the SDSS are the primary focus of this section. Development of a functional

architecture for the crew's Display and Control subsystem is a recommended future task.

The system architecture for the hardware and software components may be merged with

these functional architecture elements to produce the composite architecture diagram

shown in Figure 3-3.

Note that itis not possibleto develop such a diagram forthe completely genericcase,

because some assumptions must be made on decisionssuch as how many processorsare

needed and how functionalityisto be allocatedamong the processors. Around the outside

of the elements in this figure are the power distribution and core local area networks which

tie together the separate subsystem units. In the center of the elements are the multiple

local control buses which tie together the elements within a subsystem untL This figure

assumes that three general avionics processors, one special avionics processor, three local

control buses, a timing bus, and one set each of analog and discrete bundles are needed.

Two stand-alone payloads are shown under the control of the payload subsystem controller.

Not all hardware and software elements are shown; just enough to show how the generic

architecture could be allocated and tailored to a real, operational mission and system.

SpecializedS(X_ hardware elements for operationalcommand and control of the vehicle

and vehiclelaunch checkout and control are also shown, such as the launch support

interface(and perhaps launch blockhouse elements depending on functionalallocations),

and the controner for the transfer stage (if it is controlled from the spacecraft and not

independently from the ground). GAP 1 isassumed to be adequately sized to support the

integrated processing needed for guidance navigation and control, tracking, display and

control, command processing in SOCS, and the data system in SDSS. It includes the

appropriate input/output for analog and discrete signals for the entire system, since (it is

assumed) that commands over the network to other subsystem units would be

complemented by analog or discrete control signals over these lines to set up the other

subsystem units. GAP 2 is assumed to operate in conjunction with the remaining

traditional subsystems (communications, electric power, and environment and life support;

as well as with the developmental flight instrumentation needed on early missions. GAP 2
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operates(in this assumedallocation) in conjunction with a special avionics processor used

to support communications or tracking signal processing. GAP 3 supports the operation of

payloads, with some applications running in this GAP and others perhaps running in

specialized payload subsystems such as represented by Payload System 1.

The next section describes the SDSS and the SOCS, the two key subsystem architectures

developed to define the SGOAA.
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3.4 KEY INTEGRATING SOFTWARE SUBSYSTEM ARCHITECTURES

The scope of this architecture study to date has been focused on space data system

architectures. To develop space data system architectures for the NASA JSC Flight Data

Systems Division, it was necessary to examine the key applications which drive space data

system architectures, i.e., the space operations applications. These key applications consist

of the Crew Display and Control Subsystem and SO_. These subsystems, as identified in

Figure 3-2, are the two operationally oriented applications falling within the auspices of the

NASA JSC Flight Data Systems Division needed to meet user needs and which also provide

the primary means by which astronauts control the operation of the spacecraft. They must

be effectively supported by the SDSS, also within the auspices of the NASA JSC Flight Data

Systems Division. The SDSS consists of all data processing and data communications

services and operating system entities supporting the vehicle avionics subsystems. The

SOCS and SDSS Subsystem architectures have been developed and our presented in the

following paragraphs of this section. The Crew Display and Control Architecture is

recommended as a future development task for the SGOAA study. The other avionics

subsystems identified in Figure 3-2 fall under other NASA JSC Divisions. It is

recommended that the SATWG initiate development of generic avionics architectures for

those avionics subsystems identified in Figure 3-2 that are outside the auspices of the NASA

JSC Flight Data Systems Division.

The SDSS and the SOCS are the two primary integrating subsystems in a space vehicle

avionics architecture. The following paragraphs discuss the generic architectures developed

for these two subsystems and present the top level merged data and control flow diagrams.

Common elements that provide a broad spectrum of generic avionics functions/services

are also presented. To be developed as complete architectures for specific applications, the

generic architecture definitions for these two subsystems require additional system

engineering activity to develop control state transition diagrams, fault

tolerance/redundancy management requirements and risk management definitions,

perform prototyping and simulation implementation, and implement performance

analysis.

3.4.1 SPACE DATA SYSTEM SERVICES ARCHITECTURE

The SDSS is a generic architecture designed to provide a comprehensive set of data

processing services to all space vehicles and subsystems. The SDSS architecture was

designed to satisfy the following architectural guidelines:
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• Servicesmust hide hardware implementation characteristicsfrom applications.
- Minimize changeeffectsand maintenanceproblems.
- Easereconfiguration.
- Reusesoftware.

• Use standards for services to achieve open architecture.

- Provide transparent system expansion.

- Enable new technology insertion.

- Minimize interface implementation difficulties and change.

- Provide a basis for interoperability.

• Based on Client Server Model

Application Program Interface (API) must be established and utilized to achieve

application portability.

Message protocol must be standardized to achieve interoperability between

cooperating systems.

• Hides Hardware Characteristics E'om Applications

- Minimize change effects.

- Ease of reconfiguration.

- Software reusability.
- Minimize software maintenance.

• Hide System Configuration from Applications

- Minimize change effects.

- System expansion transparency

- New technology insertion transparency.
- Minimize software maintenance.

• Use Standards Where Feasible

- System expansion transparency.

- New technology insertion transparency.
- Minimize interface changes.
- Allows utilization of common items.

• Avoid Duplication of Function

- Minimize training.
- Standardizes interfaces.

- Minimizes development costs.

• Provide Common Service Elements

- Where needed by two or more applications.
- Common software.

- Generalized services to connect all systems.

• Transparency of Data Location and Source

- All access is through Runtime Object Data Bases (RODBs) located in

distributed processing elements.

• Supports a Multi-Processing/Distributed Processing Environment.

• Fault Detection and Redundancy Management
- Built in to all levels of the architecture.

- Hardware monitor of hardware failures.

- Software monitor of system status.

- Automatic reconfiguration by hardware/software with manual override.
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Figure 3-4 shows the five functional entities which comprise the SDSS to meet these

architectural requirements.

Sensors & Effectors

Crew
D&C

Crew
D&C

APt
(Including
Operations
Control
Subsystem)

Bare
Machine
User

\
Space
Operations
Control

Subsystem

Figure 3-4. Space Data System Services

The Standard Data Services Manager provides all interface to the system users for data

processing and data communication service_ Services to be provided to the users are

derived directly from user requirements.

The Data System Manager provides the housekeeping and control services for the SDSS.

There is a command and control interface to the crew and to the SOCS. Command and

control service requirements are derived directly from user needs.

The three other software entitles in the architecture, Network Services Manager, Data Base

Manager and Operating System provide SDSS services as required by the Standard Data

Services Manager and the Data System Manager. An Ada Language bare machine user may

interface directly with the Ada RTE.

Note that Figure 3-4 identifies both direct and indirect derived required functions. Direct

derived required functions (Standard Data Services Manager and Data System Manager) are
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those derived to directly provide the functionality needed to meet requirements imposed by

user applications for information and services control and data distn'bution. The indirect

derived required functions (Network Services Manager, Data Base Manager and Operating

System) are derived, in turn, to meet the requirements imposed by the Standard Data

Services Manager and Data System Manager functions; thus they indirectly meet user

applications requirements for control.

The successful implementation of a generic avionics architecture is based on the

establishment and compliance to both logical and physical interface standards and

requirements at the user interfaces to that architecture and internal to the architecture. The

following paragraphs discusses each of the five SDSS functional entities at lower levels of

functional decomposition.

3.4.1.1 SDSS Control Modes

Figure 3-5 shows the multiple ways in which a user may exercise control of and

communicate with the SDSS. These multiple logical communication paths provide

robustness to the system.

Primary Applic
Control (Corn
Procedures)

Primary Applic
Control (Semi-
Automated

Data
Services

Primary Data
Control

Secondary APl_iC
Control (Override

,/Manual Switches)

(each node)

Data

System
Manager

--.,-- Logical

Physical

Appiic
Control

Data bye
Control

(each node)

Figure 3-5. Space Data System Services Provides Multiple Control Modes
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Therearedirect hardware (physical) interfaces established between the Crew Displays and

Controls (D&C), Ground Control, SOCS, Applications and the Standard Data services

Manager. Applications are defined as user software running in a processing element and

any associated hardware under control of the application such as Inertial Measurement

Units, RCS jets, etc. The ground control interfaces are by way of RF links to a SAP and then

over the core network or local communication to the processing element containing the

Standard Data Services Manager of interest. Crew, SOCS and Application interface is over

the core network, local bus or by a direct interface to the processing element.

User transparent logical interfaces provide alternate paths for command and control of the

SDSS and Applications. The primary logical control path is through the SOCS to either the

Applications or to the Data System Manager. In the event of a SOCS malfunction, the crew

can communicate directly with the Data System Manager or Applications by way of service

paths provided by the Standard Data Services Manager. Manual overrides such as switches

may be provided as required.

Note that the single physical interface to the external environment is the Standard Data

Services Manager thus simplifying the physical interface verification process.

3.4.1.2 Standard Data Servlces Manaoer

The Standard Data Services Manager is a service software functional entity that provides

data and command service common functions that are required by one or more

applications. Data is defined as sensor data, application data and crew or SOC_ data.

Commands refer to effector commands, requests to application programs and requests to

Crew D&C procedures.

As shown in Figure 3-6, Standard Data Services consists of the modular sub-elements Data

Acquisition, Data Distribution and the Reports Generator. Standard Data Services executes

under the Operating System.
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Figure 3-6. Standard Data Services Manager

3.4.1.2.1 Data Acquisition

Data Acquisition (DA) provides both data and command functions. Provided are the necessary

protocols and command sequences to acquire data over local data buses. DA places all sensor da_a in

a RODB for application access. DA, at user re.quest, can also perform pre-processing on sensor data

such as limit checking and data conversions. DA performs all writes of data and commands to both

local RODBs and remote RODBs (RODB Link) as required by applications. All non-recoverable

changes to the RODB are sent to the Journal Manager in a distributed processing system in order to

maintain a RODB backup copy for recovery purposes. DA provides the necessary protocols and

command sequences to write effector commands issued by applications over local data busses. DA

also provides the interface to the Network Services Manager for remote effector commanding over

the core network to remote processing elements. DA, at user Rquest, provides command data

conversions from computed data types to data types required by the effector device. For a

distributed processing system, the Journal Manager loads the RODB in the distributed processing

elements at initialization and maintains a backup copy of the RODB for reconfiguration and/or

reinitializadorL
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3.4.1.2.2 Data Distribution

Data Distribution (DD) provides local and remote reads of Standard Data Services data and

commands from local and remote RODBs. RODB read supports application reads of sensor

data, command requests, and application derived data from both local RODBs and remote

RODBs (RODB Link). This function also handles the distribution and logging of all data

associated with caution and warning events, application derived events and advisory

messages. These events may be detected from sensor data or detected by applications.

Events messages are created and distributed. Standard Data Services health and status data is

provided to the Data System Manager for evaluation and appropriate action. DD sends

RODB sensor data and application derived data to the ground in accordance with specified

telemetry data tables and formats.

3.4.1.2.3 Reports Generator

The Reports Generator provides a general report generation capability primarily based on

predefined table driven formats, data sources and report destinations. Requests for reports

are made through the SOCS. This entity also provides the capability to generate special

purpose reports.

3.4.1.3 Network Services Manaoer

The Network Services Manager (NSM) as shown in Figure 3-7 provides for peer-to-peer

communication between applications on distributed processing elements communicating

over the SDSS core network. These processing elements may be on the same core network,

on different core networks(by way of a gateway or bridge) or to a remote system such as the

ground through a SAP configured as the service provider for an air to ground

communication link. The NSM provides all management services required for the local

core network.
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Figure 3-7. Network Services Manager.

The architecture is based on standards developed by, and others currently under

development by the lSO. The basic reference model for OSI consists of seven layers. Figure

3-8 shows an example of partitioning between software and hardware supported by this

architecture. The NSM architecture is targeted toward having a common implementation

executing under the Operating System in each processing element on the core network.

As shown in the example of Figure 3.8, a potential relationship can be mapped between the

OSI Stack and elements of the NSM architecture. The OSI stack implementation is a design

that can be implemented under the NSM architecture; however, the NSM architecture is

general enough to allow other implementations such as TCP/IP. This is accomplished by

providing for capability for the NSM architecture to contain software interfacing up to the

applications, software interfacing between applications and drivers, software drivers for the

hardware, and the actual hardware.
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3.4.1.3.1 Network Service Controller

The Network Service Controller (NSC) as shown in Figure 3-9 is the element in the NSM

that provides all user access to the network. It is the controlling function for the NSM. All

user access to the network is to be through a NSM Interface Definition (NSMID). This

NSMID will consist of a set of service primitives for each NSM function.

All requests for network service and responses to those requests for services are through the

NSC prior to being sent to the appropriate NSM function for implementation. The NSC

provides for command verification, program management (Network Stack Control),

management of the queue of service requests by priority designation, management of time

for the complete SDSS, and is the interface to applications using the NSM. The NSC

exposes all of the NSMID services to users.

In order to provide a standard interface to the network and isolate application/user

uniqueness, all requests for services to the NSC and responses to those requests from the

NSC will be through the Standard Data Service Manager and not direct to the

applications/users. Network health and status data is provided to the Data System Manager

3.4-9



for evaluation and appropriate actionasrequired.Health and statusdata is also provided to

the Network Manager for use in reconfigurationof the network to accommodate failures.

Network Remote Directory Network
Manager Operations Service Association

Manager Manager Controller

Network

Stack
Controller

Timing Standard Data
Service Data System
Controller Service Manager

Manager

Figure 3-9. Network Service Controller

3.4.1.3.2 Network Manager

Network Manager (NM) functions can be divided into network coordination (configuration

management), performance management, security management and network fault

detection, isolation and control (FDIR) management. Network coordination accumulates,

develops and maintains a network address table that contains the addresses of all processing

elements on the network. Performance management gathers data for performance analysis

and accounling. Performance management data is sent to the Data System Manager for

evaluation and initiation of action to resolve performance problems that may occur. In

specific instances, the network may reconfigure without commands from the Data system

Manager to bypass hard failures. Security management detects unauthorized attempts to

enter the network or modify network parameters and reports infractions to the Data System
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Manager. FDIR Managementcollectsand reports permanenterrors, transient errors and

failed attempts to establish a peer-to-peer association to the Data System Manager. FDIR

Management performs authorized reconfiguration in the event of a hard failure.

3.4.1.3.3 Remote Operations Manager

The Remote Operations Manager (ROM) is the entity that provides the capability for

interactive applications processing in an open systems environment. A remote operation is

defined as one in which an application in one processing element requests an operation by

an application in another processing element on the network. The ROM establishes the

protocol necessary to request, control and acquire the results of remote operations.

3.4.1.3.4 Network Association Controller

This entity provides a capability for two application entities to establish, maintain, control

and release an application association over the network.

3.4.1.3.5 Directory Service Manager

The NSM Directory Service Manager (NSM DSM) provides a directory of names, addresses

and other information needed by the NSM to establish communications over the network.

The NSM DSM contains the protocol required to obtain access to the directory and the

names and addresses of all processing elements on the network. In addition, the NSM DSM

will contain the names and status of all application entities to which an association may be

attempted. The NSM DSM protocol will provide a capabgity to obtain access to directory

services on external networks. NSM DSM will provide the capability to be modified by the

Data System Manager in order to reflect network and application status. Requests for service

from remote directories will use the capabilities of the Remote Operations Manager.

3.4.1.4 Data System Manaoer

The Data System Manager (DSM) shown in Figure 3-10 is the system executive, the entity

that manages and monitors the Space Data System hardware and software. The DSM

executes under the Operating System. In a distributed processing system the DSM will have

a single processing element designated as the DSM with Parts of the DSM functions

distributed to the other processing elements on the network. For fault recovery purposes, at

least one additional processing element on the network should be assigned as a redundant
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"hot backup" to the DSM processor. The distribution of functions is necessary to provide

the DSM with the ability to acquire the data needed to manage the system. In a centralized

processing system aU DSM functions will be in the central processing element with a

redundant backup being an option dependent on system requirements.

The DSM performs initialization, startup, configuration and reconfiguration of the data

system, maintains the configuration, monitors data system health and status, handles

assigned data system FDIR responsibilities and manages the time distribution system.

:_

f confJouretJon _.. _ Standerd

Data Services
Standard Data
Network Services
Data Base Manager
Operating System

Operations
ConWolSubsystem

Crew DJeplsy
& Control

Figure 3-10. Data System Manager

3.4.1.4.1 Configuration Management

This function maintains the system configuration data base. Prior to the mission, the initial

system configuration is defined and loaded into the data base. This system configuration

table will contain the topology of the system, processing element addresses, application

software load allocations, service software load allocations, fault recovery reconfigurations

processes and all other data needed to completely define the data system. During operation,

DSM will use this configuration table to manage the data system. DSM is also responsible
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for updating this table to account for all reconfiguration activity.

the DSM can initiate changes to the configuration.

The crew or SOCS through

3.4.1.4.2 Initialization, Startup and Reconfiguratlon

At power-on, the capability shall be provided for the DSM processor to load the DSM

software, perform self-test, broadcast that it is operational and take command of the system.

Simultaneously, the backup DSM processor will load the backup DSM software and

broadcast that it is operational. In the event the backup DSM processor does not receive a

message from the DSM processor that it is operational and has assumed command, the

backup DSM processor will interrogate the DSM processor. If a satisfactory answer is not

received from the DSM processor by the backup DSM processor, the backup DSM processor

will command the DSM processor off-line, designate another processor as backup and take

command. If a satisfactory answer is received by the backup DSM processor from the prime

processor, initialization will continue in a normal sequence. A similar sequence shall be

followed in the event the backup DSM processor does not initialize to an operational state.

The following sequence of events shall follow initialization of the DSM. On a data system

wide basis, the DSM Initialization, Start-up and Reconfiguration entity is responsible for

accessing the system configuration table at system initialization to determine what software

is to be loaded into the various processing elements and in what sequence. Once that

determination is made, the DSM shall load the appropriate software into each processing

element and initialize the processing elements in the predefined sequence. Each processing

element shall perform self-test as a part of the initialization sequence and report test results

to the DSM Health, Status and FDIR Controller. Initialization failures shall be handled in

accordance with the pre-loaded fault handling and reconfiguration tables. Successful

completion of the initialization sequence shall be reported to the SOCS and Crew and the

DSM Health, Status and FDIR Controller shall begin gathering status data on all system

elements. In the event that the required status is not reached within a specified time period

a fault condition shall be reported.

This DSM entity can also be requested within mission guidelines by the crew, SOCS, a pre-

planned sequence of events, applications through Standard Data Services, Network

Services, Operating System or the Health, Status and FDIR Controller to load and initialize

software, terminate software and reconfigure the data system.
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Within eachprocessingelement,the capability must be provided upon DSM command to

load, initiate and terminate application software via the Operating System. The capability

must also be provided to download application software and issue system configuration '

commands to processing elements attached to local communications.

3.4.1.4.3 Health, Status and FDIR Controller

This controller consists of a four stage process. Each processing element gathers health and

status, then processes the data if capable, sends the data to the DSM which then processes

the data fi'om all sources to perform Health, Status and FDIR control on a data system wide

basis. All detected faults and failures are reported to the crew and to SOCS. The degree of

automatic recovery and reconfiguration based upon detected faults and failures is

dependent upon the system implementation and the mission.

In each processing element, the Health and Status (I-I&S) function collects the application

processor H&S data. Faults are reported to the application processor local FDIR function.

All H&S data along with fault data is also sent to the DSM H&S and FDIR Controller. The

application processor FDIR function processes the H&S data to determine the health and

status of the processor. This function alerts the crew, SOCS and the DSM of detected faults,

failures and overloads.

The system H&S function resides in the DSM processor. It collects H&S data from all

processing elements and maintains this information in a data base. The data is also sent to

the system FDIR function for processing to detect faults and failures. H&S is responsible for

maintaining a fault log for all system components and for controlling the reconfiguration of

the system resources. This function provides for automatic reconfigurations to account for

detected faults and failures, based on pre-defined configurations and mission rules

contained in the system configuration table. This function also provides for manual

reconfigurations in response to crew and/or SOC.S commands. The recovery process for

each fault subject to automatic recovery must be defined in the system configuration table.

This function also detects system overloads. All detected faults and failures are reported to

the crew and SOCS.

3.4.1.4.4 Timing Service Controller

This function monitors the status of the time source and the time distribution service. It

also coordinates the distribution of time to all processing elements. It provides the
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capability for automatic reconfiguration within established system configuration table

guidelines based upon faults or failures. It also provides the capabilities for manual

reconfiguration and resynchronization based upon commands from the crew and/or SOCS.

3.4.1.5 O0eratlno System

The Operating System (OS) as shown in Figure 3-11 provides the layer of SDSS software that

isolates other services as well as application software from the data processing hardware

element. The OS provides management, allocation, and deallocation of the processor,

memory, timing and input/output (I/O) processing resources for application and service

software. The OS architecture for the SDSS provides for custom Ada software applications

(Ada RTE), and commercial off-the-shelf (COTS) utilities and applications (0'3 Kernel). In

addition, OS/RTE Extensions is provided to accommodate device and resource

management functions unique to the SDSS that are not normally provided by an Ada RTE.

Non-standard processor services are provided to accommodate unique mission processing

requirements. Note that the Space Station OS/Ada RTE has many features common to this

generic OS architecture.

COTS Ada
)lications Applications

OS Base
Kernel Manager

System
Manager

Ada
RTE

OS/RTE
Extensions

Data Servioea

Services

Figure 3-11. Operating System Services
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3.4.1.5.10S Kernel

The OS Kernel provides an operating environment which supports COTS applications,

existing non-Ada compatible COTS software and Ada applications through the OS/RTE

Extensions by compliance with pre-defined API standards. API standards should provide

for transition to or be POSIX compliant. The 0(3 should be compatible with the 1K3SIX OSE

Reference Model as described in reference [POSIX91] and OS Kernels used in commercial

processors. Major functions provided are process management and communications,

memory management, I/O operations, CPU management, privacy and security, software

initialization and configuration management, utility services and provision of software

error monitor and logging support for FDIR. The process management function should

provide a multi-program environment enabling one or more multi-tasking real-time Ada

application programs to run simultaneously with multiple non-real-time programs.

3.4.1.5.2 Ada RTE

The Ada RTE entity is to provide the necessary processing services to support the Ada

programming language as defined by ANSI/MIL-STD 1815 (latest version), Reference

Manual for the Ada Programming language. The Ada RTE will also support and be

supported by the OS/RTE extensions and be supported by a POSIX compliant OS. Processing

services to be provided are task management and communication, memory management

and I/O management. The Ada RTE will be required to operate in two environments. The

first environment is a characterized by multiple Ada programs with multi-tasking

supported by a POSIX compliant OS. The second environment is characterized by multiple

real-time Ada programs implemented on an OS kernel.

3.4.1.5.30SIRTE Extenslons

OS/RTE Extensions provides those functions required by the SDSS that commercial OS

Kernels or Ada RTEs do not normally provide. It is to be noted that if the OS Kernel or Ada

RTE provides the function it does not have to be developed as an extension. The

extensions can be separated into the two categories. The first consists of those functions

which are dependent upon the hardware and software implementation. They are

management of the backplane bus internal to the processing element, initialization and

self-test, and timing distribution. The second category consists of those functions which

have the potential for compatibility with POSIX Ada bindings (IEEE P1003.5) as the POSIX
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standard continuesto be developed. These functions are real-time applications task control

and communications, Ada multi-program management and inter-process communication.

3.4.1.5.4 Non-Standard Processing Services

This function provides those processing services which are unique to a specific vehicle or

mission. A representative list of potential services is shown in Figure 3-11. These services

would be provided by a SAP configured for the unique needs of the system.

3.4.1.6 Data Base Manaaer

This entity provides services to the SDSS subsystems and application users for the

management of structured data files, file transfers and file redundancy management. In a

distributed processing environment with a data processing element or elements assigned to

function as a mass storage device and containing multiple processing elements on a

network, the generic architecture would be as shown in Figure 3-12. For a centralized

processing system with only one processing element (not including redundancy) the

functions shown to transfer data files between processing elements (nodes) on a network

would not be required. The Data Base Manager (DBM) executes under and uses the services

of the OS. All communication with and requests for services from the DBM are through

the Standard Data Services Manager.

3.4.1.6.1 File Service Controller

The function provides the services necessary to create and manage structured files. Files

conforming to a standard fixed structure are baselined in order to provide the capability for

file transfers between non-homogeneous software systems. The File Service Controller

(FSC) responds to requests for file transfers from the Distributed file Transfer Controller

function located in other nodes. This function also manages the DBM resources such as

driver tables and provides for file redundancy based on a pre-defined data criticality.

3.4.1.6.2 Node Directory

The DBM will be provided a directory at system initialization of node names and addresses

authorized for specific file transfers. The DBM will perform file transfers in accordance

with this directory. The directory can be modified by the crew or SOCS with the DBM being

responsible for maintaining the directory.
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Figure 3-12. Data Base Manager

3.4.1.6.3 File Transfer Access and Management

This function provides the means to transfer structured files outside the SDSS to systems

with heterogeneous software. The capability to receive files from heterogeneous systems

will also be provided. The file will be converted to virtual file store form and transferred in

this form upon receipt of an authorized request. The receiving system must provide the

capability to convert the virtual file store form to the receiving system real file store form.

The DBM will provide the capability to convert from virtual file store form to SDSS real file

store form.

3.4.1.6.4 Distributed File Transfer Controller

This function provides the means to transfer structured files inside the SDSS upon request

from applications, the crew or SOCS to the requested location.
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3.4.2 SPACE OPERATIONS CONTROL SUBSYSTEM

In the SGOAA, the SOCS is the high level integrating command and control functional

entity for a space vehicle and mission. SOCS functions may be allocated to both ground

mission control facilities and onboard space vehicle facilities. As illustrated in Figure 3-13,

the Crew, through the SDSS, has direct interface to and ultimate control of all vehicle

subsystems through the various controller entities. The crew also has a direct manual

interface option to the subsystems through the Systems Controller. Ground control

functions are implemented through the Command Controller. For unmanned vehicles,

the Command Controller is the primary control source. The Systems Controller is the

direct interface to all subsystems and implements the commands of each individual

controller entity. The Systems Controller, Vehicle Controller and Command Controller are

discussed in more detail in the following paragraphs.

Although these vehicle operations control functions may be partitioned and allocated to

some degree between ground and space-borne control facilities, this does not imply there

are no other functions to be performed by a ground control facility. The focus in SOCS is on

vehicle operations control, not overall mission control, which may imply other functions

will be needed to be performed in a ground control facility.

3.4.2.1 Vehicle Controller

The function of the SOCS Vehicle Control Manager is to coordinate the actions of the

individual subsystem controllers with regard to overall operation of the vehicle. Figure

3-14 illustrates some of the major functions that this manager must perform. Vehicle mode

is a function of mission phase and/or vehicle situation. Each mode requires a different set

of control rules and commands. Regardless of vehicle mode, the Situation Awareness

Manager has the responsibility for being aware of vehicle state with regard to the external

environment and taking action or providing alerts as appropriate to ensure mission success

and prevent vehicle or crew loss. The State/Attitude Controller has the responsibility to

know internal vehicle states and to coordinate these states with incoming commands to

change states in order to implement the incoming commands in a safe and optimum

manner. The Alternative Response Manager has the responsibility to determine and

maintain awareness of vehicle capabilities and provide this information as needed to

authorized requesters to include recommending changes to commanded actions if the

vehicle capabilities will not support that action.
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3.4.2.2 C,ommand Controller

This controller is the central control entity for the spacecraft and mission. The functions, as

shown in Figure 3-15, are allocated to onboard implementation or to the ground control

center, based upon vehicle and/or mission need. In a manned vehicle a capability is

provided for crew override. The Command Manager provides a capability to implement

those command and control sequences necessary for specific mission accomplishment. The

Mission Plans Manager is the primary builder and keeper of the plans (from both the

current mission and all older missions that preceded the currently underway mission), and

is the entity that develops predefined timelines or adapts them to real-time commands

from external authorized sources such as the crew or ground control personnel. The

Mission Operations Manager is the execution entity for the mission timelines or real-time

commands. The Mission Information Manager is responsible for gathering mission

activities, operations and subsystems data and making this data available to users. Each of

these functional entities can be allocated to either the ground mission control center, the

mission director, the spacecraft command processing subsystem, or the spacecraft

commander. They can be allocated to the backroom support agencies, the offboard

operations control or the onboard operations control. This definition of Command Control

enable the architecture to insure all operations control requirements are identified,

allocated to implementation facilities, and include pre-planned interface requirements.

3.4.2.3 _;ystems Controller

The Systems Controller is the vehicle controller and is the command and control interface

to all vehicle subsystem controllers from all other control entities, as shown in Figure 3-16.

This entity coordinates the interaction of an vehicle subsystems in responding to command

inputs from all sources in order to enable the vehicle to safely and effectively accomplish

the mission. The System Controller must at all times be aware of vehicle state and resource

status and implement all commands received in accordance with the impact on vehicle

state and capability. In manned vehicles, the crew has a direct interface to issue commands

to subsystems through the Systems Controller. The crew will also have a capability to

override Systems Controller commands under predefined conditions. Each subsystem will

have an internal control entity for its own operation.
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3.4.2.4 Comm_nications & Tmckino Control

The Communications and Tracking Control application prepares the communications

directions to implement command control function guidelines, maintains

communications configuration data, and manages tracking configurations to enable the

crew to maintain control over communications subsystem software.

3.4.2.5 Crow Mana0er

The Crew Manager application is the overall management applications system for

supporting the vehicle crew activities. It consists of scheduling software to monitor crew

time schedules, medical applications to monitor crew health and checkups, and training

applications and simulations to enable the crew to perform training while in flight.

3.4.2.6 Intearated Loaistics Control

The Integrated Logistics Control subsystem performs the logistics management and the

maintenance management functions for the spacecraft. This function is shown in Figure

3-17. It insures that logistics support elements are available when needed to support vehicle

and crew activities, and that maintenance can be performed as needed to insure aU

components on the spacecraft will be operable when needed. Maintenance addresses both

planning activities, preplanned routine repairs and ad hoc emergency repairs as needed.
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3.4.2.7 Payload and Science Oneratlons Control

The Payload and Science Operations Control subsystem is a microcosm of the overall SOCS

application, tailored to the needs of individual payloads. It performs the functions shown

in Figure 3-18. The payload and science command control function provides the command

processing for the payload and its command interface to the rest of the spacecraft. The

payload and science systems control performs the health and status monitoring and control

for the payloads and their interface to the spacecraft subsystems. The payload and science

vehicle control function provides a control subsystem for real-time and non-real time

operation of remote spacecraft and rovers. The payload and science communications

control provides the control interface between the SOCS communications controller, the

avionics communications subsystem and the payload communications subsystem.

The payload operations control subsystem architecture is structured to provide maximum

(potential) independence to the payload subsystems so they may operate independently of

the vehicle operations control. Since the payloads may have missions aspects different

from the host vehicle with concurrently performed missions, which may not be linked, this

will provide greater flexibility to the operation of payloads and science missions.
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3.5 SPACE DATA SYSTEM ARCHITECTURE APPLICATIONS

The SGOAA can be used to implement avionics architectures for specific mission

requirements, and to define the detailed functions and subfunctions and the preferred

partitioning between hardware and software. This section describes a comparison of the

SGOAA to the Space Station architecture, and describes how the SGOAA was used to

develop the preliminary architecture requirements for the Common Lunar Lander.

3.5.1 SPACE STATION APPLICATION

In order to test the validity of the Generic Processing Hardware Architecture Model, shown

previously in Figure 2-16, a test case was conducted to determine if the functions provided

by this architecture model were capable of satisfying the Space Station DMS Processor

functions. The results of this test case are shown in Figure 3-19, with each of the four small

block diagrams representing Figure 2-16. The equivalency of the Generic Processing

Hardware Architecture functions to the Space Station DMS Hardware Architecture

functions are shown below:

Generic Processing Architecture

• Network Processing =

• Application Processing =

• Local Bus Processing =
• Test and Checkout =

• Auxiliary Memory Storage =

• Video/Graphics =

• I/O Processing =

Space Station DMS Architecture

Network Interface Unit

Embedded Data Processor

Bus Interface Unit

Software Development and Diagnostic Unit

Mass Storage Device

Video/Graphics
Direct Interfaces to Sensors and Effectors

As can be seen from Figure 3-19, all of the DMS functions are satisfied. For example, the

Space Station Mass Storage Unit (MSU) requires the Network Processing function to

communicate over the FDDI network. The Application Processing Function is required to

handle assigned Data Base Management and Data System Management System Services

Processing. The Auxiliary Memory Storage Function is required as the basic function of the

MSU is to provide mass data storage for the Space Station. The Test and Checkout Function

is required for hardware diagnostics as well as software development, test and diagnostics.

The Standard Data Processor (SDP), Multi-Purpose Application Processor (MPAC) and the

Multiplexer/Demultiplexer (MDM) functional requirements are similarly accommodated.

The Time Generation Unit and Base-band Signal Processor are considered to be SAP units

and as such require unique functional configurations.
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3.5.2 COMMON LUNAR LANDER APPUCATION

The modularity and tailorability of the SGOAA was tested by applying it to the avionics

design of a new initiative vehicle called the Common Lunar Lander. The elements of the

SGOAA presented below were tailored to the preliminary Common Lunar Lander system

requirements in order to define the data management and command system requirements.

The Common Lunar Lander (CLL) is an unmanned lander designed to land a 60 Kg payload

anywhere on the surface of the Moon. It will be launched on an Expendable Launch

Vehicle and has a nominal mission duration of 5 days. The conceptual design includes

most of the major subsystems that one would expect of any space vehicle including:

Guidance Navigation and Control, Communications, Tracking, Power, Propulsion, and of

course a Data System. The only interface to the payload is a struch_al attachment (i.e. no

data, power etc.).

3.5.2.1 Space Operations Control Subsystem Reoulrements Tallorln 0

Figure 3-20 presents the SOCS elements aftertailoringto the CLL requirements. The shaded

areas represent those elements which are not required in order to implement the CLL

design. For example, since the CLL isunmanned, there isno need for the Crew Manager

Function. The Payload and Science Operations Control function was eliminated because

the only interface to the payload is the physical attachment. Likewise the Integrated

Logistics Control function was eliminated because of no requirement for these functions on

board the CLL.

While the above functions were deleted in their entirety, some of the other functions were

tailored at a lower level For instance, when allocating the vehicle control function, all

elements were eliminated except the mode control functions.

One of the guidelines was to keep the vehicle as simple as possible. Since this is an

unmanned vehicle, failures are not life threatening. For this and cost reasons, single string

design concepts were emphasized if part reliability could be estimated to provide a

reasonable chance of mission success. Thus for safety, fault tolerance and reliability issues,

this meant not using elements of the architecture which were available. For the Command

Control and System Control functions, those elements related to safety, fault tolerance and

reliability were deleted. Similar criteria were used to delete other elements of the

Command Control and System Control functions.
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3.5.2.2 Space Data System Services Reaulrements Tallorlna

Figure 3-21 presents the SDSS elements after tailoring to the CLL requirements. There is no

requirement for a core network in the Common Lunar Lander data system concept. This is

because, for the vehicle size and mission, the data system reduces to one node, thus there

are no peer-to-peer communications taking place. For this reason, the Network Services

Manager was deleted.

The other deleted elements are fairly self explanatory. The hashed-out area under

Operating System represents tailoring that will take place in the future. At the time this

tailoring was done, it was not clear as to whether an Operating System Kernel would be

required or an Ada Run Time Environment. It is clear, however, that both are not

required, so the tailoring will take place at some future time when the requirements

become more defined.

/

3.5.2.3 Space Data System Hardware Reaulmments Tallorlna

As mentioned above, there is no requirement for a core network in the Common Lunar

Lander data system. Thus communications between subsystems will be of the Local

Communications variety. This leads to the Space Data System Hardware Tailoring

presented in Figure 3-22. The grayed out area in the upper half of the figure shows the

SGOAA hardware not required for the Common Lunar Lander mission. Other subsystems

are represented as instantiations of the GAP(M), Sensors or Effectors.
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v Figure 3-22. Space Data System Hardware Requirements Tailoring

3.5.2.4 GAP Internal Architecture Reaulrements Tallorina

Figure 3-23 presents the Generic Processing Hardware Architecture Tailoring. The grayed

out areas represent the elements of the SGOAA Hardware Architecture that were removed

from this implementation since they were not needed. Network Processing was eliminated

because there is no core network for the Common Lunar Lander. Ancillary processing

elements as well as Auxiliary Memory Storage were not required, and obviously because it

is unmanned, video and graphics support was not required. The GAP will be responsible

for applications processing, so that function was retained. Likewise, Local Bus Processing is

an important feature of the CLL conceptual design. One of the driving requirements for the

CLL hardware is the ability to handle various I/O interfaces. It requires numerous analog

and discrete interfaces to other subsystems, and thus the I/O Processing function plays an

important role in the GAP Internal Architectural. The Test and Checkout function is also

required for the CLL.
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3.5.2.5 Lessons Learned

The resulting tailored architecture for the Common Lunar Lander is shown in Figure 3-24.

One of the important issues in the Common Lunar Lander Design was the method of

producing, distributing and updating mission time. There were two basic concepts which

were considered. First, use a separate Time Generation Unit and a separate timing bus.

From a SGOAA point of view this would be analogous to a sensor and thus fits comfortably

within the architecture. The other method would be to have the timing unit on a card

inside the GAP. Although this option is not explicitly identified as one of the GAP Internal

elements, provision for such extensions are allowed by the 'q3ackplane Expansion"

capability, and could easily be incorporated as another element attached to the backplane

bus. This demonstrates the robustness of the architecture, because new elements can be

added in a modular fashion without changing the structure of the architecture.

3.5-9
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4. CONCLUSION AND RECOMMENDATIONS

4.1 CONCLUSIONS

The SGOAA architecture presented in this report is the product of the continuing "Flight

Data Systems Architecture Development and Analysis Task". Updates on the architectural

development will be provided as reports and presentations to future SATWG and SAE

forums. During this study effort, several guidelines were developed that should be applied

to all spacecraft generic avionics architecture development activities. These guidelines are:

• The architecture must be based on standards

• The architecture must be general enough to span platforms for all missions and

operational requirements

• The architecture should be a requirements architecture; Le. one that can be tailored for

design implementation based on actual system requirements.

• The architecture must be adaptable to varying system requirements.

• An avionics control structure must be integrated into an architecture.

• The architecture must be adaptable to alternate system design and development

approaches.

o• Static and Dynamic Analysis Techniques

• - Functional, Hardware, Object-Oriented, Structured Analysis, etc. Methodologies.

The generic avionics architecture discussed in this report has been applied to the

preliminary design of the data system for the Common Lunar Lander (ARTEMIS) project.

In general, the SDSS architecture was well suited to handle the ARTEMIS requirements.

Preliminary evaluation of the design effort to determine lessons learned for application to

the continuance of the SGOAA study yielded that the SDSS architecture should be extended

to encompass the software development environment architecture and the test

environment architecture. The SOCS architecture requires modification to more distinctly

define the interfaces and partition the architecture between the spacecraft and ground

control.

This application of the SGOAA to the Common Lunar Lander (CLL) enabled performance

of a preliminary assessment of the CLL Data System requirements based on CLL System

requirements. The preliminary architecture for the CLL Data System was developed from

the SGOAA generic SDSS and SOCS detailed functional architectures in approximately two
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days. Further work involved a refinement of the preliminary architecture and interviews

with other subsystems to determine their requirements on the CLL Data System. This lead

to the estimation of the overall CLL Data System size and complexity. This exercise

successfully validated the usefulness of the SGOAA because it allowed for the realistic

estimation of CLL Data System requirements in a very short time. At the same time,

lessons learned from applying the architecture such as a GAP Internal Architecture Timing

Element will be worked back into the SGOAA.

4.2 RECOMMENDATIONS

This document is presented to share information with SATWG members from the various

NASA centers and with participating members from industry in order to solicit their

feedback and support in the further development and refinement of this architecture.

It is recommended that the SATWG formally adopt the SGOAA and the following four

SGOAA models for space avionics application:

• SGOAA System Architecture Model Definition, as discussed in paragraph 2.3.1.

• SGOAA Architecture Interface Model Classes, as discussed in paragraph 2.3.2.

• SGOAA Generic Processing External Hardware Architecture Model Definition, as

discussed in paragraph 2.3.2.1.2.

• SGOAA Generic Processing internal Hardware Model Definition, as discussed in

paragraph 2.3.2.1.3

In addition, the following recommendations are made for extensions to the ongoing NASA

JSC Flight Data System Divisions SGOAA study:

• Incorporate results/recommendations of relevant SATWG previously-commissioned

architecture studies into the SGOAA.

• Extend the SGOAA to include development of a Software Architecture model

• Extend the SGOAA to include development of a System Development and Test

Environment model and interfaces.

• For the interfaces identified in the SGOAA, determine the standards requiring

development and their requirements.
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• Extend the functional architectures supporting the SGOAA by completing the open

functional architecture for the SOCS and developing one for the human oriented D&C

subsystems.

• Apply the SGOAA to the design of a future Avionics System such as the "First Lunar

Outpost" and run simulations of the design using dynamic analysis tools and techniques

to validate the resultant design concept, evaluate system performance against

requirements and to test potential SGOAA interface and requirements interactions.

It is also recommended that the SATWG initiate development of generic avionics

architectures for the following avionics subsystems that are outside the auspices of the

NASA JSC Flight Data Systems Division.

• Electrical Power Control Subsystem

• Environmental and Life Support Subsystem

• Payload Operations Control Subsystem

• GN&C Control Subsystem

• C&T Control Subsystem
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APPENDIX A

SGOAA DEFINITIONS

Abstraction is the principle of using only those aspects of an entity, object, operation,

function, process, or other subject which are relevant to the current purpose and ignoring

those aspects not needed to improve analytical focus on the current subject. This principle

simplifies a complex subject to render it more susceptible to analysis and design. In object

oriented approaches, data abstraction is the principle of defining a data type in term of the

operations that apply to the entities of the type.

Application is the use of capabilities (services/functions) provided by an information

system specific to the satisfaction of a set of user requirements. (POSIX P1003.0 Draft 14

Guide)

Application Platform (AP) is the set of resources that supports the services on which an

application or application software will run. Also known as a host platform. (POSIX P1003.0

Draft 14 Guide)

The application platform provides services at its interfaces that, as much as possible make

the specific characteristics of the platform transparent to the application.

The Application Program Interface (API) is the interface between the applications software

and the applications platform, across which all services are provided. (POSIX P1003.0 Draft

14 Guide)

The API is primarily in support of application portability, but system and application

interoperability are also supported by the communications API.

Application Software is software that is specific to an application and is composed of

programs, data and documentation. Application software has uniquely defined interfaces.

(POSIX P1003.0 Draft 14 Guide)

Architecture is the structure of Application Software, API, AP, and EEIs which describe the

organization and interfaces of a system.

Avionics System is the set of all electronic and processing based subsystems on a space

vehicle, including all hardware, software and other electronics needed to control and

operate the space vehicle. It is the collection of system elements and allocated capabilities

that provides the coordinated functionality for end-to-end processing in handling the

information needed to interface the space vehicle's major components, to control its
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interaction with its environment, and to respond to human commands. (Adapted from

[JSC 31000])

Communication Interface is the boundary between application software and the external

environment, such as application software on other host platforms, external data transport

facilities and devices. The communications interface may be internal to one space vehicle

or across multiple space vehicles. (POSIX P1003.0 Draft 14 Guide)

The services provided are those whose protocol state, syntax and format all must be

standardized for interoperability.

Communications components include phone lines, global networks, local area networks,

and packet switching equipment.

Component is one of the parts resulting when an entity is decomposed into constituent

parts.

Concurr_nt engineering is defined as the application of multiple engineering disciplines to

develop requirements in several different but related areas at the same time so the

requirements are coordinated and mutually supportive.

Continuity_ is defined to mean that requirements changes are proportional to design

changes, i.e., that changes in the requirements will propagate into changes of the same order

of magnitude in the design.

Control Subsystem is an application which selects and implements alternative actions based

on a-priori criteria or real time guidance..

Core Avionics is defined as the control subsystems and the supporting avionics (hardware

and software) needed to enable these control subsystems to function. Core avionics include

the controls for each of the traditional space avionics hardware subsystems (such as

Guidance Navigation and Control (GN&C) and Communications and Tracking (C&T)).

The avionics hardware sensors and effectors are outside the core avionics boundary.

Data Base Manager is the control subsystem which manages structured data files, file

transfers and file redundancy management.

Data Processing Subsystem is an application subsystem providing data processing services.

Data processing subsystems do not perform control subsystem functions.

Data System (for example the Space Data System - SDS) is a network of data system services,

onboard computational resources, data storage, and human-machine interface devices

which provide onboard command and control, data transmission, computation/processing,
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and operating applicationssoftware to support a space vehicle's users (crew and controllers),

interfacing systems, applications and subsystems.

Data System Services (for example the Space Data System Services - SDSS) is a service

subsystem with a generic functional architecture designed to provide a comprehensive set

of services to all vehicles and subsystems.

Data System Manager is the control subsystem which manages the housekeeping and status

control services for the SDSS, including health management.

Decomposability is defined to mean requirements can be broken into smaller pieces with

potentially simpler solutions or at least better understanding and a capability for further

decomposition as needed.

Degraded mode is a system condition wherein some system elements (such as hardware,

software, human, or procedural) are sufficiently unhealthy that the system cannot operate

normally.

Dependability is the integrated capability for reliability, maintainability, fault detection and

isolation, reconfiguration, and fault recovery with a non-stop operating system.

Direct Interface is defined as the connection between an entity sending or receiving data

with another entity receiving or sending data for transmission of the same data along the

routing path associated with moving data from the source of the data to the end user of the

data. Data is used by an entity in a direct manner if it passes the data on without changing

the data; thus, for example, network operating systems are direct interfaces between

applications when they package or unpack data and send it to another network node.

Distributed System is a collection of computers, memories, buses and networks that are

concurrently operating in a cooperative manner and communicating with each other.

End-user of data is the last entity which makes a significant transformation, conversion or

operation on the data.

is an abstract element that represents an object in the real world, its data attributes

and essential services with their respective performance and quality characteristics.

External Environment .(EE) is defined as a set of external entities with which the application

platform exchanges information. These entities are classified into the general categories of

human users, information interchange entities and communication entities. (POSIX

P1003.0 Draft 14 Guide)
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Theseentities areclassified into the generalcategoriesof human users,information

interchange entities and communication entities.

External Environment Intea'face (EED is defined as the interface between the application

platform and the EE across which information is exchanged. The EEI is defined primarily in

support of system and application interoperabiHty. This interface consists of

human/computer interaction services, information services, and communications services.

(POSIX P1003.0 Draft 14 Guide)

is the ability of an architecture to be extended or adapted to new conditions,

changes in specifications or new technologies.

Flight Critical Function is a function which, if it fails, could cause loss of vehicle control

resulting in loss of the vehicle and crew.

Function is an action/task that the system must perform to satisfy customer and developer

needs.

Generic Architecture is an architecture where the elements of the architecture do not

depend on any one mission or program for their definition. The elements of a generic

architecture can be tailored to apply to many different missions and programs.

A Handler Subsystem is a data process which implements a predefined, directed procedure,

either from a control subsystem or a management subsystem.

The Human/Computer Interface is the boundary across which physical interaction between

a human being and the application platform take place.

Interface is the shared boundary between two functional units, defined by functional and

other characteristics, as appropriate.

Interoperability is the ability of two or more systems to exchange information and to

mutually use the information that has been exchanged. (FOSIX P1003.0 Draft 14 Guide)

Information hiding (also called encapsulation) is the principle used in developing system

structures where components should encapsulate or hide a single requirements or design

decision, with an interface that reveals little of the inner workings of the system. Software

information hiding refers to the technique of making the external interface to an entity

public, but keeping the internal design details hidden from view. Hiding of the internal

design information allows the implementation of the entity to be changed without

requiring the external interfaces of the entity to be changed. By hiding the internal
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implementation, changesareeasier to makewith minimal rework when system changes

are needed.

Information Interchange Components are things like removable disk packs, floppy disks,

security badges and remote data bases on other application processors accessed by way of

Communications services.

The Information Interchange Interface is the boundary across which external, persistent

storage and data interchange services are provided.

The physical format, data format, code sets and data descriptions are required to be specified

for data portability and interoperability.

Inheritance is the principle of receiving properties or characteristics from an ancestor. In

architecture definition, it allows the specification of common attributes and services only

once because they can then be passed to all descendent or referenced subsystem architectures

or elements.

Laboratory Architecture is defined as a structure which is capable of being configured to

represent a subject open system architecture. Thus, it must include (but not be limited to)

non-proprietary standard communications, processing and interfaces. Interfaces to a

simulation of the subject's operational environment is included. The lab architecture must

include instrumentation, benchmarks, test/simulation controls, displays, and data analysis

capabilities. It must be extensible through the addition of subsystems, services and resources

following published rules. It must be precisely described and maintained.

Logical Interface is defined as the requirements associated with establishing a data

interchange interface between a source of data and the end user of the data. The end user of

the data must be identified to include the requirements for the data and the source

supplying the data must also be identified. Data routing is transparent to logical interface

entities. Routing of the data should not be a concern to the source and end user because the

routing (i.e., direct requirements) is transparent to these entities.

Management subsystem is a data processing subsystem which may interface to a human to

determine options and select alternatives for implementation. A management subsystem

which has no human interface may support one which does have a human interface, or it

may be an artificial intelligence capability which replaces a human, perhaps in unmanned

missions.

Mission Critical Function is any function which, if it fails, results in an incomplete mission,

a mission abort or a loss of payload.
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Mission Ready mode is a system condition wherein all system elements, including

hardware, software, human and procedural, are available to enable the system to perform

its intended function and the current mission for which it is intended.

Mode is a predefined set of hardware and software configurations, and associated

procedures used to organize and manage the conditions of operation for an avionics

system's behavior, as planned, pre-planned or directed by a human.

Modular Architecture is an architecture composed of discrete components such that the

design of one component depends only on the interface to other components, not on their

internal design. A modular architecture is decomposable, understandable, protected, has

continuity and is organized in a robust structure. It is desirable that a change in one

component has minimal impact on other components. (Adapted from [SSP 30235]).

Network Services Manager (NSM) is a control subsystem which manages peer-to-peer

communication between applications software running on distributed processing elements

communicating over a network.

is something perceptible to the sense of vision or touch or to the mind.

Open Forum is defined as the review of a subject in a public consensus process.

_Open Interface Standards are standards that are complete, consistent and published. Open

interface standards must be maintained and accepted by a publicly accessible review body.

_Open Specifications are public specifications that are maintained by an open, public

consensus process to accommodate new technologies over time and that are consistent with

international standards. The public consensus process for open specifications must be

maintained and accepted by an open forum. (POSIX P1003.0 Draft 14 Guide)

Open System is a system that implements sufficient open specifications for interfaces,

services, and supporting formats to enable properly engineered applications software

(POSIX P1003.0 Draft 14 Guide):

- to be ported with minimal changes across a wide range of systems

- to interoperate with other applications on local and remote systems

- to interact with users in a style that facilitates user portability

Open System Interface Standards are standards that provide for open specifications of open

systems.
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An Open System Application Program Interface is a combination of standards-based

interfaces specifying a complete interface between an application program and the

underlying application platform and is divided into the following parts fPOSIX P1003.0

Draft 14 Guide):

• Human/Computer Interaction Services API

• Information Services API

• Communication Services API

• System Services API

Open Systems Architecture is defined as an architecture for an open system using open

specifications. It consists of a structure of interconnected functional subsystems (i.e., black

boxes) using non-proprietary communications, based on open specifications for interfaces,

and providing high level standard services. The interface between the application software

and the underlying application platform must be based on an Open System Application

Program Interface. To be open, the architecture must be extensible through the addition of

subsystems, services and resources following open specification rules.

open System Environment (OSE) is the comprehensive set of interfaces, services and

supporting formats, plus user aspects for interoperability or for portability of applications,

data, or people, as specified by information technology standards and profiles. (POSIX

P1003.0 Draft 14 Guide)

Operating System (OS) is the layer of software that isolates services and application software

from the application platform hardware element. The OS provides services for at least

management, allocation, and deallocation of the processor, memory, timing and

input/output (I/O) processing resources for application and service software.

Operationally Ready mode is a system condition wherein most system hardware, software,

human and procedural elements are functioning correctly, but not all subsystems are

configured as needed for a mission to be performed.

Portability is the ease with which software can be transferred from one platform, application

or information system to another. (IK)SIX P1003.0 Draft 14 Guide)

Profiling is the process of selecting a set of one or more base standards, and where

applicable, the identification of chosen classes, subsets, options, and parameters of those base

standards, necessary for accomplishing a particular function. (The profile selection process

is discussed in section 6 of [POSIX91]).
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Protection is defined to mean that the architecture will limit the effect of abnormal

conditions in design elements at run-time to just the affected modules or as a minimum

will limit the propagation of abnormal conditions.

Red-tagged mode is a system condition wherein sufficient system hardware, software,

human or procedural elements are failed that the system cannot operate at all.

Requirements Architecture is an architecture that can be tailored for design

implementation based on actual system requirements.

Robustness is the measure of a system's ability to support continued functioning under

abnormal operating conditions.

Safety. Critical Function is any function which has an associated condition, event, operation,

process, equipment or system (including software) with the potential for major injury or

damage, adapted from [SSP 30235].

Service Subsystem is service software on an applications platform, which provides

transparent services to the using control or data processing subsystem.

Service functions are usually widely replicated in support of many control or data

processing subsystems. This wide replication of functionality is a key determining

characteristic in defining an individual process as a service in this methodology. Services

are critical to system operation, not to mission or vehicle operation per se. An example of a

service function is a Report Generator since many applications and control subsystems

must generate reports; here, they call on the report generator service which knows how to

look up the table defining the applications/control report, how to format the format for

completion, how to find the data to fill the report fields with, and how to route the report

for distribution based on a predefined distribution list. High level standard services are

services such as timing, distributed data handling and fault tolerance, which may have

different needs when viewed as a multi-processing system than when considered as a single

processor system.

Source is the originator of data passed across a logical interface.

Space Data System - see Data System.

Space Data System Servicw - Data System Services.

Space Generic Open Avionics Architecture (SGOAA) is defined as the target open

architecture standard being developed to provide an umbrella set of requirements for

applying a generic architecture interface model to the design of specific avionics
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hardware/software systems.This standarddefinesa genericsetof systeminterfacepoints

and establishesthe requirementsfor applying appropriate low level detailed

implementation standardsto thoseinterfacespoints. The genericcoreavionicssystemand

processinghardware architecture models provided by the standard are robustly tailorable to

specific system applications and provide a platform upon which the generic interface model

is to be applied.

Standard Data Services Manager is the interface handling subsystem that manages the

services that process requests for interaction between sensors, effectors, applications

software and other services.

.Standard is a document established by consensus and approved by a recognized body, that

provides, for common and repeated use, rules, guidelines, or characteristics for activities or

their results, aimed at the achievement of the maximum degree of order in a given context.

Standardized Profile is a balloted formal, harmonized document that specifies a profile.

(POSIX P1003.0 Draft 14 Guide)

System is defined as the composite of equipment, material, computer software, personnel,

facilities and information/procedural data that satisfies a user need. (Electronic Industries

Association Bulletin SYSB-1)

System Hardware Architecture is an architecture consisting of the set of hardware resources

in a configuration of distributed computers, memories, buses and network elements.

Some of the characteristics that determine the nature and requirements for a system

hardware architecture are the number of processors, their type and topology, the speed and

size of shared memory available, the local memory of each, the bandwidth and access to

communications media, and the interfaces available for use by people, applications and

platform software services in the hardware.

System Software Architecture is an architecture consisting of the elements and interfaces

between software components in a system.

System Services Software is common software, independent of application software, which

is needed to run applications software and enable it to interface to data within a system or

across the EEL This is similar to the POSIX entity, system software, which is defined as the

application independent software that supports the running of application software.

Task is defined as a software entity that is executed in parallel with other parts of a software

program to perform an action. [BOOCH87]
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Understandability is defined to mean all requirements related to a subject can be found and

viewed together, and individually and jointly understood by the analysts and designers.

A Utility Function is a function which if it fails will result in no control loss or unsafe

condition.
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B. ARCHITECTURE SPECIFICATION TABLES

B.1 INTRODUCTION

The data presented in this appendix provide examples of potentially selectable specific

performance parameters, and are excerpts from [BOE91]. Satisfying these performance

parameters, such as less than one second for real-time transport delay, is a design

implementation requirement dependent upon the needs of a specific system and as such are

outside the scope of the SGOAA.
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B.2 MISSION AND VEHICLE REQUIREMENTS

[BOE91] was prepared to provide avionics flight data systems (FDS) requirements as shown

in Tables B-l, B-2 and B-3. They are applied to the following four classes of target vehicles:

* Class 1 is made of large manned vehicles consisting of independent segments

with flight critical real-time needs and with life support, such as the Trans-Earth

Injection Stage (TEIS - Piloted), the Trans-Mars Injection Stage (TMIS - Piloted),

the SSF/ACRV and Orbital Assembly Nodes.

• Class 2 is made of large manned vehicles consisting of a single segment, reduced

real-time flight critical needs and life support, such as the Earth Crew Capture

Vehicle (ECCV - Lunar), Earth Crew Capture Vehicle (ECCV - Mars), Lunar

Excursion Vehicle - Piloted, Mars Ascent Vehicle, the Mars Descent Vehicle,

Lunar Habitat/Lab/Support Modules, Martian Habitat/Lab/Support Modules,

NSTS Shuttle Follow-On, Personnel Launch System, Lunar Rover (pressurized),

Martian Rover (pressurized), Ballistic Vehicle - Mars, Ballistic Vehicle - Lunar,

and Lunar Transfer Vehicle - Piloted.

• Class 3 is made of smaller manned vehicles consisting of a single segment,

reduced criticality requirements, possibly with no life support, such as

EVA/EMU, Manned Maneuvering Unit - Phobos Type, Lunar Rover

(unpressurized), Mars Rover (unpressurized), and Modular Space Sub.

• Class 4 is made of unmanned space flight or planetary surface vehicles or

facilities, such as the Aero Assist Flight (AFE) experiment, Communications

Orbiter, Earth Orbit Vehicles, Lunar Excursion Vehicles, Mining and

Manufacturing Equipment for Lunar or Mars, Mars Sample and Return,

Meteorological Stations, Observatory Equipment for Lunar or Mars, Robotic

Rovers for Lunar or Mars, Science Equipment for Lunar or Mars, Site Recon

Orbiter, Trans Mars Injection Stage - Cargo, and Lunar Transfer Vehicle - Cargo.
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B.3 PERFORMANCE PARAMETER REQUIREMENTS

A potential set of FDS standard sensor interfaces are shown in Table B-4. FC1 is defined as

Category Flight Critical (FC) Level 1. Categories and levels are defined in Table 2-1.

SENSOR INTERFACE

Table B-4. Sensor Interface

NO. REAL-TIME
INTERFACES

FCIA, MC2A, SC3A

0 to200

NO. NON-REAL-TIME
INTERFACES

Data bus compatible type

Data bus non-compatible n/a 100 to 24,000

type

High data rate type 0 to 10 0 to 10

MC2B, SC3B, NC4B
n/a

A potential set of FDS standard effector interfaces are shown in Table B-5.

EFFECTOR TYPE

Table B-5. Effector Interfaces

NO. MISSION
CRITICAL AND

SAFETY CRI_CAL
INTERFACES

NO. FLIGHT
CRITICAL

INTERFACES
FC1 A

TBD

MC2A, SC3A
MC2B, SC3B

NO. NON-
CRITICAL

INTERFACES
NC4B

Data bus compatible type TBD TBD

Data bus non-compatible TBD TBD TBD

type
total 50 to 500 25 to 1,000 25 to 100

The Bit Error Rates potentially applicable shah be as defined in Table B-6, among onboard

users and between users and Communications and Tracking C&T.

Table B-6. Bit Error Rate Characteristics

GRADE

CHARACTERISTIC I II III

Bit Error Rate (BER) 10E-12 10E-8 10E-5

Header BER 10E-12 10E-12 10E-12

A potential set of FDS message handling priorities shall be as shown in Table B-7.
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Table B-7. Priority Message Transfer Latency (Maximum Time)

MESSAGE PRIORITY

Background

Normal Periodic

FC1

TBD

TBD

TBD

MC2

TBD

TBD

TBD

SC3

TBD

TBD

TBD

NC4

TBD

TBD

TBDNormal Event

Expedited TBD TBD TBD TBD

Emergency TBD TBD TBD TBD

The FDS shall provide for implementing throughput within the range of values listed in

Tables B-8 and B-9 for normal operation of applications available to service requester.

Values shown assume no interrupts or other network dependent overhead.

Table B-8. Processing Throughput Capacity

MIPS

THROUGHPUT PROCESSING MINIMUM MAXIMUM

Critical, Real-time 0.3 627

Critical, Non-real-time 0.5 160

Non-critical 1 100

Table B-9. Network Throughput Capacity

MBPS

INTERFUNCTION NETWORK THROUGHPUT MINIMUM MAXIMUM

Critical, Real-time local network 1 10

Critical, Real-time internetwork 1 10

Critical, Non-real-time local network 0.5 10

Non-critical local network 1 10

Non-critical internetwork 10 150

The FDS shall segregate critical data (FC1A, MCZA, MC2B, SC3A, SC3B) from noncritical

data (NC4B) and provide data protection. Potentially allocated FDS memory space available
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to software applications are listed in Table B-IO. Application space addresses may be

memory load dependent.

Table B-10. Allocated Memory Space

MEGABYTES

ALLOCATED MEMORY SPACE

Volatile Memory - Critical

MINIMUM

1

MAXIMUM

Primary Volatile Memory - Non-critical TBD TBD

Primary Non-volatile Memory - Critical 0.1 360

Primary Non-volatile - Non-critical TBD TBD

Secondary Memory, On-line - Critical 100 2120

Secondary Memory, Off-line TBD TBD

Secondary Memory, Communications Buffer 0 1500

The FDS shall generate and distribute timing within requirements listed in Table B-11.

Table B-11. Timing Requirements

TIME

Local Network:

Time Reference

RESOLUTION

(MILLISECOND)

ACCURACY

(MILLISECOND)

1 TBD

Event Timing 1 TBD

System Time (e.g., GMT) 1 TBD

Mission Elapsed Time (MET) 1 TBD

Internetwork (global):

Time Reference 1 TBD

Event Timing 1 TBD

System Time (e.g., GMT) 1 TBD

Mission Elapsed Time (MET) 1 TBD
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ARCHITECTURE

APPENDIX C

REVIEW COMMENTS AND RESPONSES

C.1 EAGLE ENGINEERING. INC. COMMENTS

Comments were provided by Eagle Engineering, 16915, E1 Camino Real, Suite 200, Houston,

Texas 77058, (713) 283-6000, dated May 27, 1992 are provided herein. These comments are on

the Preliminary Draft of the "Space Generic Open Avionics Architecture (SGOAA)

Standard", dated 2 April 1992.

This activity is an appropriate one for SATWG to sponsor, and final adoption of the product

as a standard should provide excellent return on the investment in its preparation.

C.1.1 GENERAL COMMENTS

General Comment 1)

The difficulties of dealing with an open Avionics Architecture when most onboard

systems can (with the exception of the organizations representing them) be classified

as "Avionics" are very real and apparent in this document. It will be some time

before system engineering organizations evolve which can adequately get to grips

with defining an overall vehicle architecture and to be able to take advantage of a

standardized architecture--however, this document should be pursued vigorously as

one means of providing the necessary education.

Response:

We agree, one purpose of this document is to provide sufficient technical description

and rationale to serve as a strawman for coming to grips with the necessary avionics

definitions and architecture for all space avionics and an overall vehicle

architecture. Use of standardized architectural elements appears essential in the

current funding constrained environment.

General Comment 2)

The term "function" as used in Table 2.1 "Critical Function Categories" needs to be

rigorously defined in this document. The SSF program has shown the futility of

attempting to define redundancy, reliability, fault tolerance, etc. requirements based

on traditional subsystem requirements. This proposed SGOAA standard dearly

recognizes this, but stops short of providing a clear definition of the word. With the
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continuing blurring of the distinctions between traditional Data Systems,Avionic

Systems and Non-avionics systems the term "function" (or some other term

meaning something like "a complete path from command initiation to physical

result") becomes increasingly important in the interpretation of requirements and

must be clearly understood by all involved in the design process. An example might

be the transport delays and timing constraints given in the document. Do these

apply to the total function or to the.- Avionics interface as defined in Fig. 2.3?

Response:

Agree. Function has been defined in Appendix A. In addition, parametric values

such as transport delays and timing constants have been removed from the

requirements section. These parameters are design requirements to be based on a the

needs of a specific system and as such are outside the scope of a generic architecture

such as the SGOAA.

General Comment 3)

At this stage in the development of a document such as the proposed standard, it is

often desirable to provide information of an explanatory nature which would not

necessarily find its way into the completed version. This early draft could benefit by

additional text of this type in several areas. It is suggested that where the

information is obviously tutorial in nature, that the discussion is so identified, e.g.

in italics or different font, etc.

Response:

Agree that explanatory and rationale type material must be provided. This

document is equivalent to the .0 document of POSIX, in that it attempts to provide a

full technical description of the architecture. This document is not the standard per

se to be proposed; that will be provided in a separately released document with just

the specification data needed and appropriate to a standard. An executive s_

and briefing materials will also be published.

General Comment 4)

It is suggested that verifiability be considered in this Standard. Difficulties and costs

associated with verification have become increasingly more evident in the history of

NASA programs and, indeed, verification is currently a major issue in the Space

Station Freedom Program. Consideration might be given, for example, to promoting

the partitioning of flight software into simply "critical" vs. "non-critical" parts (or
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perhaps into the categories of Table 2-1) for the purpose of verification. Emphasis

would then be put on the preflight verification of the more critical parts, with

possibly the exclusion totally of verification of parts with little or no criticality.

Another application might be the consideration of verification in deciding the

command path architecture discussed in Section 3.4.1.1. Although from one

perspective multiple command paths provide "robustness", they also impose a

verification penalty which may be intolerable, in many cases it will prove more cost

effective simply to provide redundant strings of single command path hardware.

Response:

Verifiability is an important facet of using a standard. Whether and how to include

it here is an open question.

General Comment 5)

The document provided for review contained computer generated diagrams which

were totally illegible. This should be corrected in subsequent versions.

Response:

The final version of this document will be submitted to a formal documentation

publication process with no poor quality diagrams at all. In the interest of speed and

cost minimization, the drafts are published more expediently. Every attempt will be

made to provide quality diagrams, however, multiple stages of reproduction cause

sufficient degradation of quality after the distribution is made to first delivery sites

that blurry diagrams may nevertheless occur.

C.1.2 DETAILED COMMENTS

Paragraph 1.0

The term "open architecture" has become fairly standard usage in the SATWG

community, but for others it might be helpful to provide a definition here in the

Introduction.

Response:

Agree. "Open Architecture" is defined in Appendix A.

Paragraph 2.1

Fig. 2.3 defines the avionics boundary as excluding the sensors/effectors, etc. This is

a reasonable approach at this stage but might be better accepted ff the title was more

C-3



limited, i.e., "Avionic Core" or "Avionics Data, Command & Control Architecture".

Also, along the lines of General Comment No. 1, it might be worth pointing out in

the discussion that from the point of view of defining an overall vehicle architecture

there is no essential difference between how the Environmental Control System

(ECS) and a traditional Avionics System such as GN&C should be handled.

Another bubble which might be added in the outer area of Fig. 2.3 is

'qnstnunentation". Although most systems have instrumentation to some degree,

most do not have enough for what has been called "development flight test" in the

past, and other, non-electronic systems such as structures must usually have

instrumentation added for any meaningful in-flight monitoring.

Response:

Use of the term avionics core architecture is an excellent idea. Determination of the

differences in handling each avionics end-user application function (such as ECS or

GN&C) requires architectural analysis. The results of such analysis would then be

reflected in the overall avionics architecture. Note that the Architecture Interface

Model treats the interfaces between the hardware and software in each applications

subsystem the same. For the purposes of clarity, each key subsystem in the avionics

should be explicitly identified in the avionics architecture diagram to avoid neglect

or the appearance of neglect.

Agree, instnunentation such as development flight instrumentation (DFI) and other

key interfaces need to be and are being addressed. The differences (in any) between

developmental flight avionics and production flight avionics also need to be

considered.

Paragraph 2.1.1.3.2 (third bulle0

It is not clear why the assumption is made that sensors and effectors have embedded

firmware. Although many do have terminations compatible with data busses such

as MIL-STD-1553, some do not and the latter may be more cost effective for simple

applications. (This is not to promote the proliferation of MDM's with A/D and D/A

conversion capability, but the option to accommodate them might be advisable in a

standard such as this.)

Response:.

The intention was to describe the most general (Le., the "shopping list" approach)

case of sensors and effectors some using firmware and some not, with the option
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provided to usean MDM to perform somesignal consolidation and pre-processing,

without specifying whether the specific low level processes such as analog-to-digital

conversion are performed in one or the other. This will be clarified in the next

release.

Paragraph 2.1.1.3.2 (fourth bulle0

There is another perspective in the realm of "intermediate level processing" which

might be considered. The position might be taken that the time has come to do away

with "intermediate processing" altogether, "smart MDM's" included, considering

the increasing compactness of flight computers while simultaneously providing

ever increasing processing capability. Such an approach would depend on

input/output/conversion processing in the 'l_ack section" or background of the

main computer (SDP), and the primary advantage would be a reduction in the

number and types of different onboard computers. The main disadvantages would

be a more difficult job of integrating all software in the main computer, and a de-

emphasis on an architecture which is "backward compatible" with existing

hardware, primarily sensors and effectors.

Response:

There is an obvious computing trend toward distributing computational power out

to the users and end devices needing processing, rather than to continue relying on

centralized computing. TI_ aviovJ_ core architecture takes no position on this

trend. The core architecture allows use of either centralized, distributed or some

hybrid by providing all the key elements to support either, in line with the idea that

the architecture is a "shopping list" of all (or at least most) potentially needed

elements which will have interfaces which have been apriori verified to be

compatible or interoperable. Note that a centralized computing scheme is just a

special case of a distributed system with just one computer providing all required

functions instead of multiple computers providing the required functions in the

distributed case.. Use of a specific distribution scheme must be determined on a case-

by-case basis depending on the needs of the specific mission being addressed.

Para_'aph 2.1.1.3.3 (sixth buIle0

It would be helpful ff the acronyms used in Figure 2.5 were used in this paragraph.

(The terms "SDP" and '_VIDP" in the text are not used in the figure, and "EP" is used

for "effector processing" in the text but used for "embedded processor" in the figure.)
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Response-.

Agree, consistency will be improved in the next draft. Some inconsistency was

allowed to pass in the preliminary draft to avoid delays in distributing the document

at the April 1992 SATWG meeting.

Paragraph 2.1.2

The Reference Model Definitions section should be deleted in favor of a section

containing definitions for the complete document. It should be closely scrutinized

for omissions. "Systems Management" and "Function" are two essentials.

Although the definition of the "Avionics System" appears to come from a reputable

source, it does contain several inconsistencies along the lines of General Comment

1) and efforts should be made to update this definition as acceptance is obtained.

Response:

Agree. The next draft will accumulate all definitions for the entire document in

Appendix A. Function will be added to the list of definitions. Systems Management

is not used in the SGOAA report, except as part of the phrase Data System

Management, which is defined in the report. Specific suggestions or

recommendations for specific definitions are welcomed to improve the robustness of

the terminology and semantics used.

Paragraph

Table 2.1 Critical Function Categories is introduced into the requirements with no

explanation as to source or background and appears to contain several arbitrary

requirements. Because of its overriding effect on Avionics architecture the source

should be given along with an adequate discussion of the rationale.

Response:

Much of this work was based on an uncompleted study being performed by Boeing

Space Data Systems. Parametric values such as transport delays and timing constants

have been removed from the requirements section. These parameters are design

requirements to be based on a the needs of a specific system and as such are outside

the scope of a generic architecture such as the SGOAA. In addition, Safety Critical is

being changed from a Level 2 criticality to a level 1 criticality. This critical function

table now is the same as is presently defined for the Space Station Freedom Program.
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Paragraph2.2.3A.2

Suggesta different headingfor this. Thepresentonedoesnot seemto fit the Control

Center or Prelaunch facility interfaces.

Response:

"Crew" was changed to "Human".

Paragraph 2.2.3.6 and following

It would be helpful if the rationale were provided for the values used in Tables 2-2

through 2-13. For example, the values of 627 MIPS in Table 2-8 and 2120 megabytes

in Table 2-10 seem large without some explanation. Also, units are missing in some

tables.

Response:

The rationales are not available. These numbers will be moved to an appendix to

separate out supportable material from material which may be correct but which

cannot be explained due to changes in supporting staff. See response to General

comment 2).

Paragraph 2.2.4.L1

It would seem that if one grade of Message Transfer Service is "Required" another

grade could not be "Allowed". Perhaps a better pairing would be "Required" with

'?_lot Allowed" and '13esired" with "Allowed".

Response:

Agree, this has been changed.

Paragraph 2.2.4.1.4

"Autonomous" should be replaced or defined. Does it mean "Autonomous with

respect to the ground", Fully Automatic, or other?

Response:

"Autonomous" has been replace with "fully automatic.

Paragraph 2.2.4.2.4

Is it the intent of this requirement that "normal operation should be maintained in

the presence of two non-simultaneous failures in a flight critical functional path-
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these failures being within the interface boundaries of the SGOAA?. If it is, then it

should so state

Response:

This is clarified in the update. It is now stated that normal operation will be

maintained for "failures within the interface boundaries of the SGOAA".

Paragraph 2.2.4.2.5

It is believed that a higher percent than 95% for Onboard Fault detection coverage

should be achieved during directed Health Monitoring tests. It is believed that the

requirement of 99% for Onboard Fault Isolation during normal operation will be

difficult and expensive to achieve. Ground rules relating these requirements to the

degree of human intervention, (if any), time constraints, percent of onboard

resources which can be assigned to the task, etc., must be developed before it is

meaningful to include such numbers as this in the standard.

Response-.

Agree that fault detection is historically in the 99+ percent range for human rated

systems, and almost as high for non-human rated systems. This area is under study

by several groups, including the SATWG Vehicle Health Management working

group, and their results (when available) will be incorporated in future versions of

this document. The use of such numbers will be moved to an appendix.

Paragraph 2.2.4.2.6 through 2.2.4.2.8

Again, it is suggested that another "ility" worth including is "verifiability".

Response:

Verifiability is an important facet of using a standard. Whether and how to include

it here is an open question.

Paragraph 2.2.4.2.8

The selection of four ORUs seems a little arbitrary. This may be a trifling

requirement in some systems and impossible to achieve in others. Consideration

should be given to specifying this as a percentage of the on-board ORUs.

Response.-

Agree, will be changed.
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Paragraph 2.3.3.6

It is suggested that applications software to applications software interfaces, although

necessary in some instances, be discouraged because of implications for integrated

systems verification.

Response:

Agree. This has been clarified in paragraphs 2.2.2 and 2.3.3.6.

Paragraph 3.3

Again, referring back to Figure 2.3, it is recommended that Figure 3-2 have

"Instrumentation" as a bubble in the unshaded region.

Response:

Agree. Instrumentation bubble has been added.

Paragraph 3.4.1.1

Again, multiple command paths may "provide robustness" but do exact a penalty for

verification.

Response:

Agree, a necessary evil perhaps. This is a program dependent decision. If the

particular needs of a specific program do not require these multiple paths, they are

not required to be used. These paths are available for the general case. The discussion

has been revised to emphasize that there is only one physical path to be verified. The

multiple command paths are logical paths which also require verification should a

specific program decide to implement these multiple paths..

Paragraph 4.1

No disagreement was found with the guidelines listed in the conclusions; however,

it is believed that the value of applying the SGOAA concept to the assessment of the

CLL Data System is overstated. This vehicle has extremely simple requirements and,

given the same ground rules, most conceptual designers would have arrived at a

configuration similar to the SGOAA or derived one in a shorter time. This is not

meant to be a criticism of the SGOAA concept-just that a better example could have

been chosen.
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Response:

Agree that the CLL is a very simple example, however, it is the most-real example

tried to date. Also, while simple, it did work, which is very unusual in systems

development. The common result of developing a generic architecture and applying

it to a real avionics need is that the generic architecture must be so heavily tailored

to work at all with adequate performance that there is little left of the "generic-hess"

of the architecture.

Paragraph 4.2

The recommendations listed appear to be pertinent; however, we believe that one of

the more important tasks is the interpretation of NASA requirements (in such areas

as Critical Functions; FDIR; Reliability; and Maintainability, for example) so that they

may be written unambiguously in a form suitable for a standard. The present

document falls far short of this, but unless it is accomplished successhdly, the

standard will not find ready acceptance. Also, it is recommended that verification be

recognized and addressed in the ongoing SGOAA development.

Response:

The recommendations list is not complete or validated at this time. Guidelines for

the unambiguous writing and interpretation of NASA requirements in general

appears beyond the scope of this document. Every attempt will be made to make this

document unambiguous by providing clear and full explanations in it. Verification

is recognized as an important function which must be addressed. TBD

Eagle Engineering appreciates the opportunity to review this proposed stmu_d, and we

hope these comments are beneficial.
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C.2 MITRE CORPORATION COMMENTS

Feedback on '_pace Generic Open Avionics Architecture (SGOAA) Standard, Proposed

SATWG Standard", as reviewed by D.M. Erb, 5/1/92

C.2.1 GENERAL COMMENTS

General Comment 1)

Title: The title might be modified in the light of the SAAP consensus that SAAP

ought not to be a "standards-setting" organization.

Response:

Agree. The title is being changed to reflect that a separate document has been

prepared as the proposed standard. It is also recognized that the SATWG is not a

standards body and reference to that capacity is being dropped from all rifles. The

new title of the document will be 'Technical Guide to the Proposed Space Generic

Open Avionics Architecture Standard".

General Comment 2)

Vocabulary: At this stage of the document, and with multiple authors,

inconsistencies are expected. I would recommend that for the next publication, an

effort be made to obtain agreement on the use of the terms: reference model,

architecture, architecture system architecture, architectural functions, model,

configuration, and standard. Then there are times the architecture and anoactual-

instantiation-of-the thing-itself-in-space seem to be equated. There is not a clean

development of the present document in these regards. NIST has struggled in this

area and I have some references that might help should arbitration be required.

Definitions, including that of "avionics", would be helpful closer to the front;

alternatively, a glossary could be used.

Response:

An Appendix A containing SGOAA Definitions has been added to the next

publication. In addition the document will be cleansed of inconsistencies in term

usage.

General Comment 3)

2.1 I had trouble with this Architecture Background section. I believe it should be

crisper in the sense of showing the development of the ideas which support the
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current proposals. If there were alternativesthat were rejected,perhaps they should
be included. A roadmap of issues and decisions here might be the only figure

needed. There seems to be a redundancy with later material.

Response:

This section has been tightened up. The development of ideas is the point of the

whole guide, and would be difficult to summarize at this point. However, rain-

summaries of ideas will be made throughout the guide at appropriate points. Rather

than rejecting alternatives, the development process was one of continual

refinement and evolution. The issues and decisions in the development process

were documented in [WRA91].

General Comment 4)

I have ordered a number of publications on avionics architectures based on work by

the Navy and Air Force. I will let you know ff they seem to be pertinent. Also, I

would recommend that you check the SEI Gener/c Avionics Software Specification

document CMU/SEI-90-TR-8, ESD-TR-90-209 by Locke et al, for ideas. Perhaps the

work done by Honeywell in the "Future Manned Systems Advanced Avionics

Study" published January 1992 should also be referenced.

Response:.

We are continuing to follow any other architecture-relevant activities, and are

interested in understanding the details of the advanced architectures being

developed by the U.S. military services, which have been considering this for many

years. The referenced documents wiU be acquired.

C.2.1 SPECIFIC COMMENTS

Paragraph 2.1.1.1

The second paragraph does not seem to relate to the rational of the first paragraph. I

need some help to understand it.

Response:

The reference to software is intended to reflect that the functions identified appear to

be software elements, so one might be mis-lead into thinking a software architecture

is being presented when it is not. This has been re-written to clarify the point.
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Paragraph2.1.1.2

Were these key principles intended to be used in the development of the

subsequently presented architecture?

Response:.

Yes, these key principles were used in the development of the architecture.

Paragraph 2.1.1.3

"Architecture analysis needs automated tools support." Were automated tools used

in the architectural analysis (if any) of the proposed architecture? If so, which ones?

What was the output? If not, why is the paragraph there?

Response:

Computer aided systems engineering (CASE) tools were used in the development of

this architecture, as described in [WRA91]. They consisted of Excelerator/RTS and

Cadre Teamwork. The output consists of detailed functional flow and state

transition diagrams, of which simplified versions have been presented in this guide.

Paragraph 2.2.3.4.1

"crew interface to SGOAA." Surely the crew doesn't need to interface with the

architecture?

Response:

Agree. What the SGOAA must do is to provide the capability for crew interface to

the Avionics system. This paragraph has been modified to reflect this.

Paragraph 2.2.3.5

"No application to application interface is allowed." I sensed a conflict with this

statement and what I understood from figures 2-2 and 2-9.

Response:

The sense of conflict probably arises from a lack of understanding as to the

distinctions between physical and logical interfaces. The only application to

application interface shown in the figures is a class 6 logical interface. This interface

allows for the passage of data from one application to another logically. The only

physical interface applications have is a class 5 interface to systems software. This

paragraph will be expanded to specifically define that" No application to application

physical interface is allowed".
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Paragraph 2.2.3.6

'Tne SGOAA Model--". Example of my difficulty with terms. Also 'q'he SGOAA

shall provide - sampling rate, data storage. -". Another example. An architecture

does not involve those things.

Response:

Agree. The architecture must provide the interfaces for the implementation of these

capabilities. Paragraphs 2.2.3.6, 2.2.3.7 and 2.2.3.8 will be modified to reflect this.

Paragraph 2.2.3.8

"the following." Something is missing.

Response:

Agree. The paragraph was rewritten to reflect that the standard interface consists of a

command and control interface, a payload data communications interface and a

Payload event timing interface.

Paragraph 2.2.4.1.3

"SGOAA Model shall provide resources and interfaces -% Again, I think a clean

definition of terms will tidy this kind of thing up.

Response:.

Rewritten to attain consistency of terms and update to revised definitions of critical

condition categories as defined in Table 2-1.

Paragraph 2.2.4.1.4

Perhaps the distinction intended between "configuration control" and "system

configuration control" should be spelled out.

Response:.

"Configuration Control" reference was deleted. I know of no difference between

"configuration control" and "system configuration control". The entire paragraph

was rewritten for clarity.

Paragraph 2.2.4.L9

"without requiring shutdown of total SGOAA" - ????

Response:

Rewritten to state: "The SGOAA shall support avionics hardware reintegration

(introduction of flight hardware previously removed from operation) without

requiring shutdown of the total avionics system"
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Paragraph2.2.4.2.6

reliability of the architecturemodel shall achievea MTBF etc ??

Response:

Rewritten to state: " SGOAA compliant systems shall achieve the Mean Time

Between Critical Failure (MTBCF) and Mean Time Between Failure (MTBbO as listed

in Table 2-5."

Paragraph 2.3

I found this section very helpful reading. Will there be any identification of

common elements in the next version? I still have the sense of a collection of

autonomous subsystems; is that intended? JIAWG has a strategy to define

"functionally interchangeable and integrated avionics modules", albeit for things

like weapon systems. They view the development of such systems as VHSIC-based

(in part, because of their self-test and diagnostics capabilities and the 50-70 percent

reduction in module count they expect from VHSIC circuits). Other technologies,

such as machine intelligence and multiuse sensors, are expect to contribute to the

implementation of a truly distributed architecture. Will your SGOAA support such

implementations adequately? I do not currently have the depth of knowledge to say.

You may want to study some of the JIAWG reports on their Advanced Avionics to

determine ff there is anything there for NASA to leverage.

Response:

1. The functional entities presented in section 3 for the Space Data System Services

and the Space Operations Control System are "common elements".

2. The subsystems are not autonomous. Although each subsystem is a modular

element that may or may not be required for a specific system the subsystems

required for a specific application must communicate and support each other in

accomplishing the system purpose.

3. The SGOAA is a functional service and interface architecture, not a technology

based architecture. The SGOAA should be capable of being implemented in

essentially any technology base.

Figure 3-1

Consider making this into 3 charts: A Functional Overview with the 2 major types of

processing broken out into only the 11 boxes. Then add tables/figures for the
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subsequent detail of these 11 boxes divided into Control Processing and Info

Processing (only 5 and 6 boxes detailed, respectively)

Response:

This figure is not, nor is it meant to be, a definitive list of all space processes. It

adequately conveys the information intended in its present form.

Paragraph 3.2

Europe's mandated hierarchical Object-oriented Design (HOOD) technique and

notation might help with the "hybrid" approach described here.

Response:.

The HOOD technique and notation will be investigated to determine the utility of

use for this application.

Figure 3-2

I would suggest a redrawing of this which highlights (by position or elimination)

the only two of the 8 bubbles you intend to describe. Alternatively, you could just

illustrate the bubbles in the "normal mode" and have the text explain your focus.

Response:

The introduction to section 3.3 has been rewritten. Figure 3-2 has not been modified

because it is intended to distinguish all primary (or typical usage of "avionics") from

other (support) avionics which are important to successful operation, such as the

data system or launch support elements. Only the support, core avionics are

addressed by this section, as noted in the re-written introduction.

Parasraph 4.2

The recommendation in section 3.4 should be recaptured here or it may get lost.

Response:

The recommendation has been captured.
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C.3 _MMENTS

C.3.1 _I'A INC COMMENTS

Feedback on the "SGOAA Standard Specification" as reviewed multiple times by CTA Inc.,

D. Cooper, 28 Jan. - 4 March 1993.

Comment 1.1:

Suggest reformatting the document outline to more closely follow the other DOD standards

such as MIL-ST_1553.

1. SCOPE

1.1 Scope

12 Application

Z REFERENCED DOCUMENTS

2.1 Standards

2.2 Other Documents

3. DEFINITIONS

4. GENERAL REQUIREMENTS

5. NOTES

Response:

Concur, the specification has been completely re-written to address this point and

related structural comments made by Dave Cooper.

Comment 1.2:

Suggest rewording the 'Scope" section to make it clear as to what you are trying to

standardize. For example, the section should start with the words "This standard

C-17



establishesrequirementsfor .... " It wasn't clear to me from reading the document in its

present form just how to fill in the blank.

Response.-

Concur.

Comment 1.3:

Most sections of the document seem to provide more information on "why" something is

being suggested rather than specifying precisely "what" the requirements really are as they

would pertain to the system designer.

Response:

The why's have been deleted (because they are in the companion technical guide) or

where especially important to understanding, they have been moved to a new

NOTES section in the specification.

Comment 1.4:

Requirements should be stated in such a way that they are obviously testable. For example,

"Voltage on Pin A, connector P42, shall be between 4.5 to 5.5 VDC in the quiescent state."

The majority of the requirements shown on pages 12-14 do not meet these criteria.

Response:

Agree, however, this is a generic specification intended to be tailored to specific

missions and systems, which are not (at this time) known. It is not clear how to

make specific quantitative requirements which are independent of specific missions

and which can be tailored during system development. Perhaps some kind of

formula might work here.

Comment 1.5:

The organization section of the document will not be necessary once the MIL-STD type

format is used.

Response:

Agree, ithas been deleted.
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Comment 1.6:

Definitions should be shortened to specify only what a particular word or phrase means in

the context of this document. Many of the current definitions seem to include application

guidance or statements of rationale or clarification that should not be in this section.

Response:

Agree, they have been made more specific.

Comment 1.7:

There are inconsistencies in several of the definitions. For instance your definition for

Application Platform comes right out of the POSIX P1003.0 definition section and contains a

reference to an "application" or "application software". In this context, I expected your

definition of "application" to also be consistent with tKY3IX. It is not. All definitions

should be reviewed for consistency.

Response:

Concur, all definitions based on tK)SIX have been changed for consistency where

needed and double checked against the P1003.0 document, and exceptions have been

specifically noted.

Comment 1.8:

Titles of referenced documents such as are shown in Table 3.2 need to be acx'ttmte. For

instance, MIL-STD-1553 is not an application handbook.

Response:

Agree, titles will be checked.

Comment Lg:.

The Architecture section needs to contain testable requirements. Listing six interface classes

and not giving specific implementation guidance is ineffective. It is, however, a good way

to breakdown the various types and levels of interface transactions that occur within a

system, and it does provide a way to compartmentalize a system design. But to make a

standard out of this document, a lot more detailed requirements need to be developed.

Response:

Agree that testable requirements are needed. However, as noted in response 1.4, this

is a generic specification intended to be tailored to specific missions and systems,

which are not (at this time) known. It is not clear how to make specific testable
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requirementswhich are independentof specificmissionsand which canbe tailored

during systemdevelopment. More detailed work is needed;that is why NASA has

approached the SAE.

Comment 1.10:.

The use of the term "physical interface" should be limited to describing mating surfaces

between physical devices such as connector halves. This usuany includes such things as

connector type, shell size, pin insert arrangement, pin size, etc. Any other use of the term

physical interface would be non-standard.

Response:

The use of the term "physical interface" has been changed to resolve this confusion.

This term was being used in the sense of "direct interface", and the term has been

changed to use the latter phrasing for clarity.

Comment 1.11:

I saw no rationale as to why this particular architecture was chosen to be your generic

"standard". You are advocating a distributed processing environment with centralized

control. This may not be appropriate for every future NASA requirement, and, therefore

may be too restrictive.

Response:

There is no intention of restricting the architecture to centralized control. This is a

misunderstanding due to unclear figures. The figures have been re-done to clarify

that centralized or distributed processing and control are both acceptable to the

architecture.

Comment 1.12:

I would have expected to see a requirement for a vehicle health management system in an

architectural standard such as this. General guidance pertaining to the required levels of

fault detection, isolation, and reporting, timing requirements for fault detection and

reporting, required degraded operational capabilities, and redundancy requirements need to

be addressed.

Response:

Vehicle health management is only one service needed in this architecture. There

are others just as important (for instance an operating system). The specification has



beenre-written to identify all the categoriesof servicesneeded. Vehiclehealth

managementis one serviceunder the data system manager service.

Comment 2.0:.

CONCLUSION:

The document presently reads more like a study report than a standard. There are some

good ideas presented concerning the interface classes, but the material needs to be presented

in the form of testable requirements to be levied on system designers. The more general

question is whether you want to try to standardize on a single architecture for all classes of

applications, or whether it would be better to try to standardize on interface definition

requirements and on certain functional requirements for fault isolation and reporting

requirements regardless of the selected architecture.

Response:

The re-written standard should no longer read like a study report. This was

originally done to provide the flavor of the POSIX documents. Agree (as noted

above) on the desirability of testable requirements. A single architecture seems

feasible if it is set up as the SGOAA is, that is with minimal constraints on actual

implementation except for key interfaces and key services. Fault isolation (as

important as it is) must not be allowed to outweigh other services just as important.

Comment 3.0.

RECOMMENDATIONS:

I would recommend that the following actions be taken before turning the document over

to the SAE for consideration as a standard.

Recommendation 1.

Reformat the document to comply with general instructions for preparation of

Government Standards.

Response:

Concur - has been done.

Recommendation 2.

Tailor the definitions contained in this document to this specific application.
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Response:

Concur- hasbeendone.

Recommendation 3.

Phraseeachof the requirementsin the document so that a method of compliance testing is

implicit in the statement of the requirement.

Response:

Concur - have attempted to, but not clear how to implement this recommendation

in many cases.

Recommendation 4.

Fill in the missing words for "this standard establishes requirements for ... "

Response:.

Concur.

Additional Comments On The SGOAA:

Comment 4:

Doesn't statea problem, thereforethe "solution"can only be judged on a presumed and

arbitrarybasis.

Response:

Do not agree,thisisa standard for a solution,not a study of problems to be solved.

Comment 5:

Interpretingthe "benefits"listedon page one seems to imply thatthe SGOAA isdirected

toward standard interfaces,commonality, and modular interchangeabilityof software and

hardware. All of which are good and worthwhile when carefullyweighed and tailoredto

allthe otherspecificsofa given missionproblem. However, none of the benefits listedare

derived from the proposed "architecture".Rather these benefitsare only derived from a

comprehensive set of module standards thatare by definitionindependent of the

architecturalcontext.

Response:

The standard has been re-writtento clarifythe use of standard interfacesand

standard serviceswith pre-defined interfaces.The purpose of these standards isto

provide standardized and common elements which would act as requirements to be
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used in systems design just as mission requirements have to be used in systems

design. Thus these standard requirements would be tailored to specific mission and

system needs. Module standards would be just one of many lower level standards

needed in conjunction with this standard, since the SGOAA is intended to be an

umbrella standard.

Comment 6:

The paper provides no analysis or discussion of alternative architectures, nor any

justification for the one presented; hence, it would be pure conjecture to attempt, to

establish the soundness of the SGOAA chosen. More importantly the real purpose of the

SGOAA seems to be to help in the process of identifying an appropriate set of interfaces that

need to be addressed in order to ensure that all required module interface standards are

driven out.

Response:

Again, this is a specification for a solution to be used in tailoring to specific mission

and system needs. No alternatives were discussed because they are not relevant.

Standard interfaces and standard services are the key requirements established in the

SGOAA. Module interfaces (for both hardware and software) are only one kind of

interface being identified as needing to be standardized.

Comment 7:

The standard totally overlooks the many critical interfaces in the power, thermal structural,

electrical shielding/grounding, etc. areas.

Response:

No, it does not overlook such critical interfaces. These are all physical interfaces

within the Class 1 interface. They would be defined in lower level standards Pointed

to by the SGOAA parent standard.

SUGGESTIONS:

Recommendation 5:

The present title of this paper implies that a standard architecture is being proposed when

that is not only not necessary for the stated benefits but is actually not desirable. With

standard modules as building blocks all of the proposed benefits can be achieved without

limiting the architecture in any way. To limit the avionics architecture to a "standard"
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would remove the most powerful tool the systemdesigner has, namely: the ability to match

the system architecture to the problem "architecture".

Response:

This is a misunderstanding of the usage of the phrase "architecture". In the SGOAA,

we are using architecture to mean the overall structure and organization of software,

hardware and interfaces (both internal and external) needed to make a system

operate. Agree that standard modules are needed, but they have to be carefully

identified and their interfaces dearly defined. That is the purpose of SGOAA - to

identify the key interfaces and services needed in a standard approach. Not to specify

that one centralized or another distributed processing architecture is the best one.

There is no undue limitation on designers - they are only constrained from re-

inventing the "wheel" just because they want their own wheel and not someone

else's wheel.

Recommendation 6:

Consideration needs to be given to all the neglected interface areas mentioned above since

these are at least of equal significance for space applications and may in fact be much more

difficult to establish since they are unique and have no commercial counterparts.

Response:

Agree, no interfaces should be neglected. We believe the SGOAA does not neglect

any interfaces.
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LFWC. P. O. BOX 748, FORT WORTH, "IX 76101
PAUL DANIEL, MAIL ZONE 2640

LSOC, 1100 LOCKHEED WAY, TITUSVILLE, FL 32780
L. J. (LEWIS) BOYD, ORG. 32-40, (Z/I.SO-183)
ARTHUR EDWARDS, ORG. 11-42, BLDG. B/DX-D, Z/LSO-284)
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BOEING CORP. PO BOX 3999, SEATTLE, WA 98124-2499
RICHARD FLANAGAN
AL COSGROVE

COMPUTING OEVICES INTL. 8800 QUEEN AVENUE SOUTH, BLOOMINGTON,
MN 55431
JIM JAMES, M/S BLCN2A
DOCK ALLEN

WE_TAR CORP. 6808 ACADEMY PKWY EAST, NE, BLDG C, SUITE 3,
ALBUQUERQUE, NM 87109
CHRIS DE LONG

HG USAF/SCS, 1250 AIR FORCE, PENTAGON, WASHINGTON, D. C. 20330-1250
COL ROBERT HANLON

ROCKWELL INT'L CORP.. 12214 LAKEWOOD BLVD., DOWNEY, CA. 90241
SUMI MATSURA

TRW, HOUSTON, TX 77058
DOUG RUE (NASA MAIL)

FAIRC:HILD SPACE, 20301 CENTURY BLVD., GERMANTOWN, MD. 20874
JOHN SCHNEIDER, FLIGHT DATA SYSTEMS

E-SYSTEMS, P. O. BOX 12248, ST. PETERSBURG, FL. 33733-2248
JIM BRADY/MS29

EER SYSTEMS INC.. 3027 MARINA BAY DR., SUITE 105,
LEAGUE CITY, TX 77573
RAY HARTENSTEIN

ROCKWELL INTL CORP.-ROCKETDYNE DIV.. 6633 CANOGA AVE, P. O. BOX
7922, CANOGA PARK, CA. 91309-7922
ANTHONY THOMPSON, D1055-LB33

RESEARC:H ANALy$1_ AND MAINTENANCE INC.. 512 AUDUBON ST.,
LEAGUE CITY, TX 77573
ROGER EVANS

M&AE, 1200 G. STREET, NW, SUITE 800, WASHINGTON DC, 20005
JOHN KELLER
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_.S. DRAPER LABS, 555 TECHNOLOGY SQUARE, CAMBRIDGE, MA 02139
J. BARTON DEWOLFE/MS 61

SBS ENGINEERING, 5550 MIDWAY PARK PLACE, NE, ALBUQUERQUE, NM
87109
MR. DEREK HEAD

NAVMAR APPLIED SCIENCES CORP. 65 WEST STREET, SUITE C200,
WARMINSTER, PA 18974
MR. DOUG D'AVINO

MR. MARTIN FREED, (ASC/ENASC), 5565 BARBANNA LANE, DAYTON, OH
45415

,_,_Q,.__MXI, WRIGHT-PATTERSON AFB, OH 45433
MR. BYRON STEPHENS

NAVAL AIR WARFARE CENTER. AIRCRAFT DIVISION, WARMINSTER,
18974-0591
RICHARD J. PARISEAU/CODE 102A
RICHARD S. MEJZAK/CODE 2021

PA

TEXA_ INSTRUMENTS. 6550 CHASE OAKS BLVD, PO BOX 869305, PIANO, TX
75086
DR. CHUCK ROARK/MS 8481

HONEYWELL INC, 3660 TECHNOLOGY DR, MINNEAPOLIS, MN 55418
MR RON FRAZZINI

PARAMAX SYSTEMS CORP. PO BOX 64525, ST PAUL, MN 55164-0525
MR DARYLE HAMLIN/MS UIF15

SUITE 310, 18333 EGRET BAY BLVD, HOUSTON, TX 77058
MR DAVID COOPER

MITRE CORPORATION, 202 BURLINGTON ROAD, BEDFORD, MA 01730-1420
WILLIAM T. BRANDOM/D-96
JACK SHAY/DIRECTOR OF SYSTEMS DEVELOPMENT

MR ED SMITH, EXECUTIVE VICE PRESIDENT, NCOSE,
1907 BELLMEADE, HOUSTON, TX 77019


